X 2 2 разложение. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Разложение трёхчлена с помощью скобки

Разложение квадратного трехчлена на множители может пригодится при решении неравенств из задачи С3 или задачи с параметром С5. Так же многие текстовые задачи B13 решатся значительно быстрее, если вы владеете теоремой Виета.

Эту теорему, конечно, можно рассматривать с позиций 8-го класса, в котором она впервые проходится. Но наша задача - хорошо подготовиться к ЕГЭ и научиться решать задания экзамена максимально эффективно. Поэтому в этом уроке рассмотрен подход немного отличный от школьного.

Формулу корней уравнения по теореме Виета знают (или хотя бы видели) многие:

$$x_1+x_2 = -\frac{b}{a}, \quad x_1 · x_2 = \frac{c}{a},$$

где `a, b` и `c` - коэффициенты квадратного трехчлена `ax^2+bx+c`.

Чтобы научиться легко пользоваться теоремой, давайте поймем, откуда она берется (так будет реально легче запомнить).

Пусть перед нами есть уравнение `ax^2+ bx+ с = 0`. Для дальнейшего удобства разделим его на `a` получим `x^2+\frac{b}{a} x + \frac{c}{a} = 0`. Такое уравнение называется приведенным квадратным уравнением.

Важная мысль урока: любой квадратный многочлен, у которого есть корни, можно разложить на скобки. Предположим, что наш можно представить в виде `x^2+\frac{b}{a} x + \frac{c}{a} = (x + k)(x+l)`, где `k` и `l` - некоторые константы.

Посмотрим, как раскроются скобки:

$$(x + k)(x+l) = x^2 + kx+ lx+kl = x^2 +(k+l)x+kl.$$

Таким образом, `k+l = \frac{b}{a}, kl = \frac{c}{a}`.

Это немного отличается от классической трактовки теоремы Виета - в ней мы ищем корни уравнения. Я же предлагаю искать слагаемые для разложения на скобки - так не нужно помнить про минус из формулы (имеется в виду `x_1+x_2 = -\frac{b}{a}`). Достаточно подобрать два таких числа, сумма которых равна среднему коэффициенту, а произведение - свободному члену.

Если нам нужно решение именно уравнения, то оно очевидно: корни `x=-k`или `x=-l` (так как в этих случаях одна из скобок занулится, значит, будет равно нулю и все выражение).

На примере покажу алгоритм, как раскладывать квадратный многочлен на скобки.

Пример первый. Алгоритм разложения квадратного трехчлена на множители

Путь у нас есть квадртаный трехчлен `x^2+5x+4`.

Он приведенный (коэффициент у `x^2` равен единице). Корни у него есть. (Для верности можно прикинуть дискриминант и убедиться, что он больше нуля.)

Дальнейшие шаги (их нужно выучить, выполнив все тренировочные задания):

  1. Выполнить следующую запись: $$x^2+5x+4=(x \ldots)(x \ldots).$$ Вместо точек оставьте свободное место, туда будем дописывать подходящие числа и знаки.
  2. Рассмотреть все возможные варианты, как можно разложить число `4` на произведение двух чисел. Получим пары "кандидатов" на корни уравнения: `2, 2` и `1, 4`.
  3. Прикинуть, из какой пары можно получить средний коэффициент. Очевидно, что это `1, 4`.
  4. Записать $$x^2+5x+4=(x \quad 4)(x \quad 1)$$.
  5. Следующий этап - расставить знаки перед вставленными числами.

    Как понять и навсегда запомнить, какие знаки должны быть перед числами в скобках? Попробуйте раскрыть их (скобки). Коэффициент перед `x` в первой степени будет `(± 4 ± 1)` (пока что знаков мы не знаем - нужно выбрать), и он должен равняться `5`. Очевидно, что здесь будут два плюса $$x^2+5x+4=(x + 4)(x + 1)$$.

    Выполните эту операцию несколько раз (привет, тренировочные задания!) и больше проблем с этим не будет никогда.

Если нужно решить уравнение `x^2+5x+4`, то теперь его решение не составит труда. Его корни: `-4, -1`.

Пример второй. Разложение на множители квадратного трехчлена с коэффициентами различных знаков

Пусть нам нужно решить уравнение `x^2-x-2=0`. Навскидку дискриминант положительный.

Идем по алгоритму.

  1. $$x^2-x-2=(x \ldots) (x \ldots).$$
  2. Разложение двойки на целые множители есть только одно: `2 · 1`.
  3. Пропускаем пункт - выбирать не из чего.
  4. $$x^2-x-2=(x \quad 2) (x \quad 1).$$
  5. Произведение наших чисел отрицательное (`-2` - свободный член), значит, одно из них будет отрицательное, а другое - положительное.
    Поскольку их сумма равна `-1` (коэффициент при `x`), то отрицательным будет `2` (интуитивное объяснение - двойка большее из двух чисел, оно сильнее "перетянет" в отрицательную сторону). Получим $$x^2-x-2=(x - 2) (x + 1).$$

Третий пример. Разложение квадратного трехчлена на множители

Уравнение `x^2+5x -84 = 0`.

  1. $$x+ 5x-84=(x \ldots) (x \ldots).$$
  2. Разложение 84 на целые множители: `4· 21, 6· 14, 12· 7, 2·42`.
  3. Поскольку нам нужно, чтобы разница (или сумма) чисел равнялась 5, то нам подойдет пара `7, 12`.
  4. $$x+ 5x-84=(x\quad 12) (x \quad 7).$$
  5. $$x+ 5x-84=(x + 12) (x - 7).$$

Надеюсь, разложение этого квадратного трехчлена на скобки понятно.

Если нужно решение уравнения, то вот оно: `12, -7`.

Задания для тренировки

Предлагаю вашему вниманию несколько примеров, которые легко решаются с помощью теоремы Виета. (Примеры взяты из журнала "Математика", 2002.)

  1. `x^2+x-2=0`
  2. `x^2-x-2=0`
  3. `x^2+x-6=0`
  4. `x^2-x-6=0`
  5. `x^2+x-12=0`
  6. `x^2-x-12=0`
  7. `x^2+x-20=0`
  8. `x^2-x-20=0`
  9. `x^2+x-42=0`
  10. `x^2-x-42=0`
  11. `x^2+x-56=0`
  12. `x^2-x-56=0`
  13. `x^2+x-72=0`
  14. `x^2-x-72=0`
  15. `x^2+x-110=0`
  16. `x^2-x-110=0`
  17. `x^2+x-420=0`
  18. `x^2-x-420=0`

Спустя пару лет после написания статьи появился сборник из 150 заданий для разложения квадратного многочлена по теореме Виета.

Ставьте лайки и задавайте вопросы в комментариях!

План – конспект урока (МБОУ «Черноморская средняя школа №2»

ФИО учителя

Пономаренко Владислав Вадимович

Предмет

Алгебра

Дата проведения урока

19.09.2018

урока

Класс

Тема урока

(в соответствии с КТП)

«Разложение квадратного трёхчлена на множители»

Целеполагание

- обучающие: научить учащихся раскладывать на множители квадратный трёхчлен, научить применять алгоритм разложения на множители квадратного трехчлена при решении примеров, рассмотреть задания базы данных ГИА, в которых используется алгоритм разложения квадратного трёхчлена на множители

-развивающие: развивать у школьников умение формулировать проблемы, предлагать пути их решения, содействовать развитию у школьников умений выделять главное в познавательном объекте.

-воспитательные: помочь учащимся осознать ценность совместной деятельности, содействовать развитию у детей умений осуществлять самоконтроль, самооценку и самокоррекцию учебной деятельности.

Тип урока

изучения и первичного закрепления новых знаний.

Оборудование:

мультимедийный проектор, экран, компьютер, дидактический материал, учебники, тетради, презентация к уроку

Ход урока

1. Организационный момент: учитель приветствует учащихся, проверяет готовность к уроку.

Мотивирует учащихся:

Сегодня на уроке в совместной деятельности мы подтвердим слова Пойа (Слайд 1).(«Задача, которую вы решаете, может быть очень скромной, но если она бросает вызов вашей любознательности, и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы». Двердь Пойа.)

Сообщение о Пойа (Слайд 2)

Я хочу сделать вызов вашей любознательности. Рассмотрим задание из ГИА. Постройте график функции .

Можем ли мы, насладиться радостью победы и выполнить данное задание? (проблемная ситуация).

Как решить эту проблему?

- Наметить план действий для решения этой проблемы.

Корректирует план урока, комментирует принцип самостоятельной работы.

Самостоятельная работа (классу раздать листочки с текстом самостоятельной работы) (Приложение 1)

Самостоятельная работа

Разложите на множители:

x 2 – 3x;

x 2 – 9;

x 2 – 8x + 16;

2a 2 – 2b 2 –a + b;

2x 2 – 7x – 4.

Сократить дробь:

Слайд С ответами для самопроверки.

Вопрос классу :

Какие способы разложения многочлена на множители вы использовали?

Все ли многочлены вы смогли разложить на множители?

Все ли дроби смогли сократить?

Проблема2: Слайд

Как разложить на множители многочлен

2 x 2 – 7 x – 4?

Как сократить дробь?

Фронтальный опрос :

Что собой представляют многочлены

2 x 2 – 7 x – 4 и x 2 – 5 x +6?

Дайте определение квадратного трёхчлена.

Что мы знаем о квадратном трёхчлене?

Как найти его корни?

От чего зависит количество корней?

Сопоставьте эти знания с тем, что мы должны узнать и сформулируйте тему урока. (После этого на экране тема урока) Слайд

Поставим цель урока Слайд

Наметим конечный результат Слайд

Вопрос классу: Как решить эту проблему?

Класс работает в группах.

Задание группам:

по оглавлению найти нужную страницу, с карандашом в руках прочитать п.4 , выделить главную мысль, составить алгоритм, по которому любой квадратный трёхчлен можно разложить на множители.

Проверка выполнения задания классом (фронтальная работа):

Какова главная мысль пункта 4? Слайд (на экране формула разложения квадратного трёхчлена на множители).

Алгоритм на экране. Слайд

1.Приравнять квадратный трёхчлен к нулю.

2.Найти дискриминант.

3.Найти корни квадратного трёхчлена.

4.Подставить найденные корни в формулу.

5.Если необходимо, то внести старший коэффициент в скобки.

Ещё одна маленькая проблема : если D=0, то можно ли разложить квадратный трёхчлен на множители, и если можно, то как?

(Исследовательская работа в группах).

Слайд (на экране:

Если D = 0, то
.

Если квадратный трехчлен не имеет корней,

то его разложить на множители нельзя.)

Вернёмся к заданию в самостоятельной работе. Сможем ли теперь разложить на множители квадратные трёхчлены 2 x 2 – 7 x – 4 и x 2 – 5 x +6?

Класс работает самостоятельно, раскладывает на множители, я работаю индивидуально со слабыми учащимися.

Слайд (с решением) Взаимопроверка

Сможем ли сократить дробь?

Сократить дробь, вызываю к доске сильного ученика.

Вернёмся к заданию из ГИА. Сможем ли мы теперь построить график функции ?

Что является графиком данной функции?

Постройте график функции у себя в тетради.

Тест амостоятельная работа) Приложение 2

Самопроверка и самооценка Учащимся выданы листочки (Приложение 3), в которые надо записать ответы. В них даны критерии оценок.

Критерии оценок:

3 задания – оценка»4»

4задания – оценка «5»

Рефлексия: (слайд)

1.Сегодня на уроке я научился…

2.Сегодня на уроке я повторил…

3.Я закрепил…

4.Мне понравилось…

5.Я поставил себе оценку за деятельность на уроке…

6.Какие виды работ вызвали затруднения и требуют повторения…

7. Выполнили мы намеченный результат?

Слайд: Спасибо за урок!

Приложение 1

Самостоятельная работа

Разложите на множители:

x 2 – 3x;

x 2 – 9;

x 2 – 8x + 16;

x 2 + x - 2;

2a 2 – 2b 2 –a + b;

2 x 2 – 7 x – 4.

Сократить дробь:

Приложение 2

Тест

1 вариант

азложить на множители?

x 2 – 8x + 7;

x 2 – 8x + 16 ;

x 2 – 8x + 9;

x 2 – 8x + 1 7.

2 x 2 – 9 x – 5 = 2( x – 5)(…)?

Ответ: _________ .

Сократите дробь:

x – 3;

x + 3;

x – 4;

другой ответ.

Тест

2 вариант

Какой квадратный трехчлен нельзя р азложить на множители?

5 x 2 + x + 1;

x 2 –8x + 2;

0,1 x 2 + 3 x - 5;

x 2 + 4 x + 5.

Какой многочлен надо подставить вместо многоточия, чтобы было равенство: 2 x 2 + 5 x – 3 = 2( x + 3)(…)?

Ответ: _________ .

Сократите дробь:

3 x 2 – 6 x – 15;

0,25(3 x - 1);

0,25( x - 1);

другой ответ.

Приложение 3

Запишите ответы.

Критерии оценок:

Верно выполнено: 2 задание – оценка«3»

3 задания – оценка»4»

4задания – оценка «5»

Задание №1

Задание №2

Задание №3

1 вариант

2 вариант

Квадратным трёхчленом называется многочлен вида ax^2 + bx + с, где x - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Чтобы разложить трехчлен на множители, нужно знать корни этого трехчлена. (далее пример на трехчлене 5х^2 + 3х- 2)

Заметим: значение квадратного трёхчлена 5х^2 + 3х - 2 зависит от значения х. Например: Если х = 0, то 5х^2 + 3х - 2 = -2

Если х = 2, то 5х^2 + 3х - 2 = 24

Если х = -1, то 5х^2 + 3х - 2 = 0

При х = -1 квадратный трёхчлен 5х^2 + 3х - 2 обращается в нуль, в этом случае число -1 называют корнем квадратного трёхчлена .

Как получить корень уравнения

Поясним, как мы получили корень этого уравнения. Для начала необходимо четко знать теорему и формулу, по которой мы будем работать:

“Если х1 и х2 – корни квадратного трехчлена ax^2 + bx + c, то ax^2 + bx + c = a(x - x1)(x - x2)”.

Х = (-b±√(b^2-4ac))/2a \

Это формула нахождения корней многочлена является самой примитивной формулой, решая по которой вы никогда не запутаетесь.

Выражение 5х^2 + 3х – 2.

1. Приравниваем к нулю: 5х^2 + 3х – 2 = 0

2. Находим корни квадратного уравнения, для этого подставляем значения в формулу (а – коэффициент при Х^2, b – коэффициент при Х, свободный член, то есть цифра без Х):

Первый корень находим со знаком плюс перед корнем квадратным:

Х1 = (-3 + √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 + √(9 -(-40)))/10 = (-3 + √(9+40))/10 = (-3 + √49)/10 = (-3 +7)/10 = 4/(10) = 0,4

Второй корень со знаком минус перед корнем квадратным:

X2 = (-3 - √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 - √(9- (-40)))/10 = (-3 - √(9+40))/10 = (-3 - √49)/10 = (-3 - 7)/10 = (-10)/(10) = -1

Вот мы и нашли корни квадратного трехчлена. Чтобы убедиться, что они верные, можно сделать проверку: сначала подставляем первый корень в уравнение, затем второй:

1) 5х^2 + 3x – 2 = 0

5 * 0,4^2 + 3*0,4 – 2 = 0

5 * 0,16 + 1,2 – 2 = 0

2) 5х^2 + 3x – 2 = 0

5 * (-1)^2 + 3 * (-1) – 2 = 0

5 * 1 + (-3) – 2 = 0

5 – 3 – 2 = 0

Если при подстановке всех корней уравнение обращается в ноль, значит уравнение решено верно.

3. Теперь воспользуемся формулой из теоремы: ax^2 + bx + c = a(x-x1)(x-x2), помним, что Х1 и Х2 – это корни квадратного уравнения. Итак: 5х^2 + 3x – 2 = 5 * (x - 0,4) * (x- (-1))

5х^2 + 3x– 2 = 5(x - 0,4)(x + 1)

4. Чтобы убедиться в правильности разложения можно просто перемножить скобки:

5(х - 0,4)(х + 1) = 5(х^2 + x - 0,4x - 0,4) = 5(x^2 + 0,6x – 0,4) = 5x^2 +3 – 2. Что подтверждает правильность решения.

Второй вариант нахождения корней квадратного трехчлена

Еще один вариант нахождения корней квадратного трехчлена - теорема обратная теореме Виетта. Здесь корни квадратного уравнения находятся по формулам: x1 + x2 = -(b) , х1 * х2 = с . Но важно понимать, что данной теоремой можно пользоваться только в том случае, если коэффициент а = 1, то есть число, стоящее перед х^2 = 1.

Например: x^2 – 2x +1 = 0, a = 1, b = - 2, c = 1.

Решаем: х1 + х2 = - (-2), х1 + х2 = 2

Теперь важно подумать, какие числа в произведении дают единицу? Естественно это 1 * 1 и -1 * (-1) . Из этих чисел выбираем те, которые соответствую выражению х1 + х2 = 2, конечно же - это 1 + 1. Вот мы и нашли корни уравнения: х1 = 1, х2 = 1. Это легко проверить, если подставить в выражение x^2 – 2x + 1 = 0.

Разложение квадратных трехчленов на множители относится к школьным заданиям, с которыми рано или поздно сталкивается каждый. Как его выполнить? Какова формула разложения квадратного трехчлена на множители? Разберемся пошагово с помощью примеров.

Общая формула

Разложение квадратных трехчленов на множители осуществляется решением квадратного уравнения. Это несложная задача, которую можно решить несколькими методами - нахождением дискриминанта, при помощи теоремы Виета, существует и графический способ решения. Первые два способа изучаются в средней школе.

Общая формула выглядит так: lx 2 +kx+n=l(x-x 1)(x-x 2) (1)

Алгоритм выполнения задания

Для того чтобы выполнить разложение квадратных трехчленов на множители, нужно знать теорему Вита, иметь под рукой программу для решения, уметь находить решение графически или искать корни уравнения второй степени через формулу дискриминанта. Если дан квадратный трехчлен и его надо разложить на множители, алгоритм действий такой:

1) Приравнять исходное выражение к нулю, чтобы получить уравнение.

2) Привести подобные слагаемые (если есть такая необходимость).

3) Найти корни любым известным способом. Графический метод лучше применять в случае, если заранее известно, что корни - целые и небольшие числа. Нужно помнить, что количество корней равно максимальной степени уравнения, то есть у квадратного уравнения корней два.

4) Подставить значение х в выражение (1).

5) Записать разложение квадратных трехчленов на множители.

Примеры

Окончательно понять, как выполняется это задание, позволяет практика. Иллюстрируют разложение на множители квадратного трехчлена примеры:

необходимо разложить выражение:

Прибегнем к нашему алгоритму:

1) х 2 -17х+32=0

2) подобные слагаемые сведены

3) по формуле Виета найти корни для этого примера сложно, потому лучше воспользоваться выражением для дискриминанта:

D=289-128=161=(12,69) 2

4) Подставим найденные нами корни в основную формулу для разложения:

(х-2,155) * (х-14,845)

5) Тогда ответ будет таким:

х 2 -17х+32=(х-2,155)(х-14,845)

Проверим, соответствуют ли найденные дискриминантом решения формулам Виета:

14,845 . 2,155=32

Для данных корней применяется теорема Виета, они были найдены правильно, а значит полученное нами разложение на множители тоже правильно.

Аналогично разложим 12х 2 +7х-6.

x 1 =-7+(337) 1/2

x 2 =-7-(337) 1/2

В предыдущем случае решения были нецелыми, но действительными числами, найти которые легко, имея перед собой калькулятор. Теперь рассмотрим более сложный пример, в котором корни будут комплексными: разложить на множители х 2 +4х+9. По формуле Виета корни найти не получится, и дискриминант отрицательный. Корни будут на комплексной плоскости.

D=-20

Исходя из этого, получаем нтересующие нас корни -4+2i*5 1/2 и -4-2i * 5 1/2 , поскольку (-20) 1/2 =2i*5 1/2 .

Получаем искомое разложение, подставив корни в общую формулу.

Еще один пример: нужно разложить на множители выражение 23х 2 -14х+7.

Имеем уравнение 23х 2 -14х+7 =0

D=-448

Значит, корни 14+21,166i и 14-21,166i. Ответ будет такой:

23х 2 -14х+7 =23(х-14-21,166i )*(х-14+21,166i ).

Приведем пример, решить который можно без помощи дискриминанта.

Пусть нужно разложить квадратное уравнение х 2 -32х+255. Очевидно, его можно решить и дискриминантом, однако быстрее в данном случае подобрать корни.

x 1 =15

x 2 =17

Значит х 2 -32х+255 =(х-15)(х-17).

Мир погружён в огромное количество чисел. Любые исчисления происходят с их помощью.

Люди учат цифры для того, чтобы в дальнейшей жизни не попадаться на обман. Необходимо уделять огромное количество времени, чтобы быть образованным и рассчитать собственный бюджет.

Математика - это точная наука, которая играет большую роль в жизни. В школе дети изучают цифры, а после, действия над ними.

Действия над числами бывают совершенно разными: умножение, разложение, добавление и прочие. Помимо простых формул, в изучении математики используют и более сложные действия. Существует огромное количество формул, по которым узнают любые значения.

В школе, как только появляется алгебра, в жизнь школьника добавляются формулы упрощения. Бывают уравнения, когда неизвестных числа два, но найти простым способом не получится. Трёхчлен - соединение трёх одночленов, с помощью простого метода отнимания и добавления. Трёхчлен решается с помощью теоремы Виета и дискриминанта.

Формула разложения квадратного трёхчлена на множители

Существуют два правильных и простых решения примера :

  • дискриминант;
  • теорема Виета.

Квадратный трёхчлен имеет неизвестный в квадрате, а также число без квадрата. Первый вариант для решения задачи использует формулу Виета. Это простая формула , если цифры, что стоят перед неизвестным, будут минимальным значением.

Для других уравнений, где число стоит перед неизвестным, уравнение необходимо решать через дискриминант. Это более сложное решение, но используют дискриминант намного чаще, нежели теорему Виета.

Изначально, для нахождения всех переменных уравнения необходимо возвести пример к 0. Решение примера можно будет проверить и узнать правильно ли подстроены числа.

Дискриминант

1. Необходимо приравнять уравнение к 0.

2. Каждое число перед х будет названо числами a, b, c. Так как перед первым квадратным х нет числа, то оно приравнивается к 1.

3. Теперь решение уравнения начинается через дискриминант:

4. Теперь нашли дискриминант и находим два х. Разница заключается в том, что в одном случае перед b будет стоять плюс, а в другом минус:

5. По решению два числа получилось -2 и -1. Подставляем под первоначальное уравнение:

6. В этом примере получилось два правильных варианта. Если оба решения подходят, то каждое из них является истинным.

Через дискриминант решают и более сложные уравнение. Но если само значение дискриминанта будет меньше 0, то пример неправильный. Дискриминант при поиске всегда под корнем, а отрицательное значение не может находиться в корне.

Теорема Виета

Применяется для решения лёгких задач, где перед первым х не стоит число, то есть a=1. Если вариант совпадает, то расчёт проводят через теорему Виета.

Для решения любого трёхчлена необходимо возвести уравнение к 0. Первые шаги у дискриминанта и теоремы Виета не отличаются.

2. Теперь между двумя способами начинаются отличия. Теорема Виета использует не только «сухой» расчёт, но и логику и интуицию. Каждое число имеет свою букву a, b, c. Теорема использует сумму и произведение двух чисел.

Запомните! Число b всегда при добавлении стоит с противоположным знаком, а число с остаётся неизменным!

Подставляя значения данные в примере, получаем:

3. Методом логики подставляем наиболее подходящие цифры. Рассмотрим все варианты решения:

  1. Цифры 1 и 2. При добавлении получаем 3, но если умножить, то не получится 4. Не подходит.
  2. Значение 2 и -2. При умножении будет -4, но при добавлении получается 0. Не подходит.
  3. Цифры 4 и -1. Так как в умножении стоит отрицательное значение, значит, одно из чисел будет с минусом. При добавлении и умножении подходит. Правильный вариант.

4. Остаётся только проверить, раскладывая числа, и посмотреть правильность подобранного варианта.

5. Благодаря онлайн-проверке мы узнали, что -1 не подходит по условию примера, а значит является неправильным решением.

При добавлении отрицательного значения в примере, необходимо цифру заносить в скобки.

В математике всегда будут простые задачи и сложные. Сама наука включает в себя разнообразие задач, теорем и формул. Если понимать и правильно применять знания, то любые сложности с вычислениями будут пустяковыми.

Математика не нуждается в постоянном запоминании. Нужно научится понимать решение и выучить несколько формул. Постепенно, по логическим выводам, можно решать похожие задачи, уравнения. Такая наука может с первого взгляда показаться очень тяжёлой, но если окунутся в мир чисел и задач, то взгляд резко изменится в лучшую сторону.

Технические специальности всегда остаются самыми востребованными в мире. Сейчас, в мире современных технологий, математика стала незаменимым атрибутом любой сферы. Нужно всегда помнить о полезных свойствах математики.

Разложение трёхчлена с помощью скобки

Кроме решения привычными способами, существует ещё один - разложение на скобки. Используют с применением формулы Виета.

1. Приравниваем уравнение к 0.

ax 2 + bx+ c = 0

2. Корни уравнения остаются такими же, но вместо нуля теперь используют формулы разложения на скобки.

ax 2 + bx+ c = a ( x – x 1) ( x – x 2)

2 x 2 – 4 x – 6 = 2 ( x + 1) ( x – 3)

4. Решение х=-1, х=3