Когда центробежный момент инерции равен нулю. Геометрические характеристики плоских сечений. Центробежный момент инерции сечения Jxy

Рассмотрим еще несколько геометрических характеристик плоских фигур. Одна из этих характеристик носит название осевого или экваториального момента инерции. Эта характеристика относительно осей и
(Рис.4.1) принимает вид:

;
. (4.4)

Основным свойством осевого момента инерции является то, что он не может быть меньше нуля или равным нулю. Этот момент инерции всегда больше нуля:
;
. Единица измерения осевого момента инерции – (длина 4).

Соединим отрезком прямой линии начало координат с бесконечно малой площадью
и обозначим этот отрезок буквой(Рис.4.4). Момент инерции фигуры относительно полюса – начала координат – называется полярным моментом инерции:


. (4.5)

Этот момент инерции так же, как и осевой, всегда больше нуля (
) и имеет размерность – (длина 4).

Запишем условие инвариантности суммы экваториальных моментов инерции относительно двух взаимно перепендикулярных осей. Из рис.4.4 видно, что
.

Подставим это выражение в формулу (4.5), получим:

Формулируется условие инвариантности следующим образом: сумма осевых моментов инерции относительно двух любых взаимно перпедикулярных осей есть величина постоянная и равная полярному моменту инерции относительно точки пересечения этих осей.

Момент инерции плоской фигуры относительно одновременно двух взаимно перепендикулярных осей называется двухосным или центробежным моментом инерции. Центробежный момент инерции имеет следующий вид:

. (4.7)

Центробежный момент инерции имеет размерность – (длина 4). Он может быть положительным, отрицательным и равным нулю. Оси, относительно которых центробежный момент инерции равен нулю, называютсяглавными осями инерции . Докажем, что ось симметрии плоской фигуры является главной осью.

Рассмотрим плоскую фигуру, изображенную на рис.4.5.

Выберем слева и справа от оси симметрии два элемента с бесконечно малой площадью
. Центр тяжести всей фигуры находится в точке С. Поместим начало координат в точку С и обозначим координаты выбранных элементов по вертикали буквой“”, по горизонтали – для левого элемента “
”, для правого элемента “”. Вычислим сумму центробежных моментов инерции для выбранных элементов с бесконечно малой площадью относительно осей и:

Если проинтегрировать выражение (4.8) слева и справа, получим:

, (4.9)

так как, если ось является осью симметрии, то для любой точки, лежащей слева от этой оси, всегда найдется ей симметричная.

Анализируя полученное решение, приходим к выводу, что ось симметрии является главной осью инерции. Центральная осьтакже является главной осью, хотя она и не является осью симметрии, так как центробежный момент инерции вычислялся одновременно двух осейии оказался равным нулю.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

ОПРЕДЕЛЕНИЕ

Осевым (или экваториальным) моментом инерции сечения относительно оси называется величина, которую определяют как:

Выражение (1) обозначает, для вычисления осевого момента инерции берется по всей площади S сумма произведений бесконечно малых площадок () умноженных на квадраты расстояний от них до оси вращения:

Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей (например, относительно осей X и Y в декартовой системе координат) дают полярный момент инерции () относительно точки пересечения этих осей:

ОПРЕДЕЛЕНИЕ

Полярным моментом инерции называют момент инерции сечением по отношению к некоторой точке.

Осевые моменты инерции всегда больше нуля, так как в их определениях (1) под знаком интеграла стоят величина площади элементарной площадки (), всегда положительная и квадрат расстояния от этой площадки до оси.

Если мы имеем дело с сечением сложной формы, то часто при расчетах используют то, что осевой момент инерции сложного сечения по отношению к оси равен сумме осевых моментов инерции частей этого сечения относительно той же оси. Однако следует помнить, что нельзя суммировать моменты инерции, которые найдены относительно разных осей и точек.

Осевой момент инерции относительно оси проходящей через центр тяжести сечения имеет наименьшее значение из всех моментов относительно параллельных с ней осей. Момент инерции относительно любой оси () при условии ее параллельности с осью, проходящей через центр тяжести равен:

где - момент инерции сечения относительно оси проходящей через центр тяжести сечения; - площадь сечения; - расстояние между осями.

Примеры решения задач

ПРИМЕР 1

Задание Чему равен осевой момент инерции равнобедренного треугольного сечения относительно оси Z, проходящей через центр тяжести () треугольника, параллельно его основанию? Высота треугольника равна .

Решение Выделим на треугольном сечении прямоугольную элементарную площадку (см. рис.1). Она находится на расстоянии от оси вращения, длина одной ее стороны , другая сторона . Из рис.1 следует, что:

Площадь выделенного прямоугольника с учетом (1.1) равна:

Для нахождения осевого момента инерции используем его определение в виде:

Ответ

ПРИМЕР 2

Задание Найдите осевые моменты инерции относительно перпендикулярных осей X и Y (рис.2) сечения в виде круга диаметр которого равен d.

Решение Для решения задачи удобнее начать с нахождения полярного момента относительно центра сечения (). Все сечение разобьем на бесконечно тонкие кольца толщиной , радиус которых обозначим . Тогда элементарную площадь найдем как:

Центробежный момент инерции относительно двух осей координат называется сумма произведений массы каждой из точек тела на координаты вдоль соответствующих осей.

Если тело имеет ось симметрии, то центробежный момент инерции тела равен нулю и оси у, х являются главными

17. Теорема Гюйгенса-Штейнера о вычислении моментов относительно параллельных осей .

Момент инерции твёрдого тела относительно оси не проходящей через центр масс равен сумме моментов инерции относительно центральной оси проходящей через центр масс и параллельной заданной и произведение массы тела на квадрат расстояния между осями.

JC - известный момент инерции относительно оси, проходящей через центр масс тела,

J - искомый момент инерции относительно параллельной оси,

m - масса тела,

d - расстояние между указанными осями.

18.Вычисление моментов инерции однородных тел: тонкая пластина, тонкий стержень, кольцо, цилиндр, конус.

Тонкий стержень: Тонкий цилиндр:

Тонкая пластина: Конус:

Тонкое кольцо: Шар:

Вычисление моментов инерции относительно произвольных осей.

Позволяет найти момент инерции относительно любой оси проходящей через оси координат и составляющие угля

С этими осями, через величины осевых и центробежных моментов инерции этих осей.

Эллипсоид инерции. Центральные оси инерции. Экстремальные свойства моментов инерции.

Центр эллипсоида находится в начале координат.

3 оси симметрии эллипсоида называются главными осями инерции, моменты инерции относительно главных осей называются главными моментами инерции.

Если в качестве осей координат принять главные оси инерции, то центробежные моменты инерции относительно этих осей будут равны нулю.

ЭЛЛИПСОИД ИНЕРЦИИ -поверхность, характеризующая распределение моментов инерции тела относительно пучка осей, проходящих через фиксированную точку О. Строится Э. и. как геом. место концов отрезков OK= 1/ , отложенных вдоль Ol от точки О, где Ol- любая ось, проходящая через точку О; Il - момент инерции тела относительно этой оси (рис.). Центр Э. и. совпадает с точкой О, а его ур-ние в произвольно проведённых координатных осях Oxyz имеет вид

где Ix, Iy, Iz - осевые, а Ixу, Iyz, Lzx - центробежные моменты инерции тела относительно указанных координатных осей. В свою очередь, зная Э. и. для точки О, можно найти момент инерции относительно любой оси Оl, проходящей через эту точку, из равенства Il= 1/R2, измерив в соот-ветдтвующих единицах расстояние R = OK.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ.

Как показывает опыт, сопротивление стержня различным деформациям зависит не только от размеров поперечного сечения, но и от формы.

Размеры поперечного сечения и форма характеризуются различными геометрическими характеристиками: площадь поперечного сечения, статические моменты, моменты инерции, моменты сопротивления и др.

1. Статический момент площади (момент инерции первой степени).

Статический моментом инерции площади относительно какой-либо оси, называется сумма произведений элементарных площадок на расстояние до этой оси, распространенная на всю площадь (рис. 1)


Рис.1

Свойства статического момента площади:

1. Статический момент площади измеряется в единицах длинны третьей степени (например, см 3).

2. Статический момент может быть меньше нуля, больше нуля и, следовательно, равняться нулю. Оси, относительно которых статический момент равен нулю, проходят через центр тяжести сечения и называются центральными осями.

Если x c иy c – координаты цента тяжести, то

3. Статический момент инерции сложного сечения относительно какой-либо оси равен сумме статических моментов составляющих простых сечений относительно той же оси.

Понятие статического момента инерции в науке о прочности используется для определения положения центра тяжести сечений, хотя надо помнить, что в симметричных сечениях центр тяжести лежит на пересечении осей симметрии.

2. Момент инерции плоских сечений (фигур) (моменты инерции второй степени).

а) осевой (экваториальный) момент инерции.

Осевым моментом инерции площади фигуры относительно какой-либо оси называется сумма произведений элементарных площадок на квадрат расстояния до этой оси распространения на всю площадь (рис. 1)

Свойства осевого момента инерции.

1. Осевой момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Осевой момент инерции всегда больше нуля.

3. Осевой момент инерции сложного сечения относительно какой-либо оси равен сумме осевых моментов составляющих простых сечений относительно той же оси:

4. Величина осевого момента инерции характеризует способность стержня (бруса) определенного поперечного сечения сопротивляться изгибу.

б) Полярный момент инерции .

Полярным моментом инерции площади фигуры относительно какого-либо полюса называется сумма произведений элементарных площадок на квадрат расстояния до полюса, распространенная на всю площадь (рис. 1).

Свойства полярного момента инерции:

1. Полярный момент инерции площади измеряется в единицах длины четвертой степени (например, см 4).

2. Полярный момент инерции всегда больше нуля.

3. Полярный момент инерции сложного сечения относительно какого-либо полюса (центра) равен сумме полярных моментов составляющих простых сечений относительно этого полюса.

4. Полярный момент инерции сечения равен сумме осевых моментов инерции этого сечения относительно двух взаимно перпендикулярных осей, проходящих через полюс.

5. Величина полярного момента инерции характеризует способность стержня (бруса) определенной формы поперечного сечения сопротивляться кручению.

в) Центробежный момент инерции.

ЦЕНТРОБЕЖНЫМ МОМЕНТОМ ИНЕРЦИИ площади фигуры относительно какой-либо системы координат называется сумма произведений элементарных площадок на координаты, распространенная на всю площадь (рис. 1)

Свойства центробежного момента инерции:

1. Центробежный момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4).

2. Центробежный момент инерции может быть больше нуля, меньше нуля, и равняться нулю. Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии, будут главными осями. Главные оси, проходящие через центр тяжести площади, называются главными центральными осями, а осевые моменты инерции площади – главными центральными моментами инерции.

3. Центробежный момент инерции сложного сечения в какой-либо системе координат равен сумме центробежных моментов инерции составляющих фигур в той же схеме координат.

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ПАРАЛЛЕЛЬНЫХ ОСЕЙ.


Рис.2

Дано: оси x, y – центральные;

т.е. осевой момент инерции в сечении относительно оси, параллельной центральной, равен осевому моменту относительно своей центральной оси плюс произведение площади на квадрат расстояния между осями. Отсюда следует, что осевой момент инерции сечения относительно центральной оси имеет минимальную величину в системе параллельных осей.

Сделав аналогичные выкладки для центробежного момента инерции, получим:

J x1y1 =J xy +Aab

т.е. центробежный момент инерции сечения относительно осей, параллельных центральной системе координат, равен центробежному моменту в центральной системе координат плюс произведение площади на расстояние между осями.

МОМЕНТЫ ИНЕРЦИИ В ПОВЕРНУТОЙ СИСТЕМЕ КООРДИНАТ

т.е. сумма осевых моментов инерции сечения есть величина постоянная, не зависит от угла поворота осей координат и равна полярному моменту инерции относительно начала координат. Центробежный момент инерции может менять свою величину и обращаться в «0».

Оси, относительно которых центробежный момент равен нулю будут главными осями инерции, а если они проходят через центр тяжести, то они называются главными осями инерции и обозначаются «u» и «».

Моменты инерции относительно главных центральных осей называются главными центральными моментами инерции и обозначаются , причем главные центральные моменты инерции имеют экстремальные значения, т.е. один «min», а другой «max».

Пусть угол «a 0 » характеризует положение главных осей, тогда:

по этой зависимости определяем положение главных осей. Величину же главных моментов инерции после некоторых преобразований, определяем по следующей зависимости:

ПРИМЕРЫ ОПРЕДЕЛЕНИЯ ОСЕВЫХ МОМЕНТОВ ИНЕРЦИИ, ПОЛЯРНЫХ МОМЕНТОВ ИНЕРЦИИ И МОМЕНТОВ СОПРОТИВЛЕНИЯ ПРОСТЕЙШИХ ФИГУР.

1. Прямоугольное сечение

Оси x и y – здесь и в других примерах – главные центральные оси инерции.

Определим осевые моменты сопротивления:

2. Круглое сплошное сечение. Моменты инерции.