Условие наилучшего среднеквадратичного приближения имеет вид. Среднеквадратическое приближение функции. Тема: Методы решения систем уравнений

Часто значения интерполируемой функции у, у 2 , ..., у„ определяются из эксперимента с некоторыми ошибками, поэтому пользоваться точным приближением в узлах интерполяции неразумно. В этом случае более естественно приближать функцию не по точкам, а в среднем, т. е. в одной из норм L p .

Пространство 1 р - множество функций д(х), определенных на отрезке [а,Ь] и интегрируемых по модулю с р-й степенью, если определена норма

Сходимость в такой норме называется сходимостью в среднем. Пространство 1,2 называется гильбертовым, а сходимость в нем - среднеквадратичной.

Пусть заданы функция Дх) и множество функций ф(х) из некоторого линейного нормированного пространства. В контексте проблемы интерполирования, аппроксимации и приближения можно сформулировать следующие две задачи.

Первая задача - это аппроксимация с заданной точностью, т. е. по заданному е найти такую ф(х), чтобы выполнялось неравенство |[Дх) - ф(х)|| г..

Вторая задача - это поиск наилучшего приближения, т. е. поиск такой функции ф*(х), которая удовлетворяет соотношению:

Определим без доказательства достаточное условие существования наи- лучшего приближения. Для этого в линейном пространстве функций выберем множество, параметризованное выражением

где набор функций ф[(х), ..., ф„(х) будем считать линейно независимым.

Можно показать , что в любом нормированном пространстве при линейной аппроксимации (2.16) наилучшее приближение существует, хотя нс во всяком линейном пространстве оно единственно.

Рассмотрим гильбертово пространство ЬгСр) действительных функций, интегрируемых с квадратом с весом р(х) > 0 на [ , где скалярное произведение (g,h ) определено по

формуле:

Подставляя в условие наилучшего приближения линейную комбинацию (2.16), находим

Приравнивая к нулю производные по коэффициентам (Д, k = 1, ..., П, получим систему линейных уравнений

Определитель системы уравнений (2.17) называется определителем Гра- ма. Определитель Грама отличен от нуля, поскольку считается, что система функций ф[(х), ..., ф„(х) линейно независима.

Таким образом, наилучшее приближение существует и единственно. Для его получения необходимо решить систему уравнений (2.17). Если система функций ф1(х), ..., ф„(х) ортогонализирована, т. е. (ф/,ф,) = 5у, где 5, = 1, 8у = О, Щ, ij = 1, ..., п, то система уравнений может быть решена в виде:

Найденные согласно (2.18) коэффициенты Q, ..., й п называются коэффициентами обобщенного ряда Фурье.

Если набор функций ф t (X), ..., ф„(х),... образует полную систему, то в силу равенства Парсеваля при П -» со норма погрешности неограниченно убывает. Это означает, что наилучшсс приближение среднеквадратично сходится к Дх) с любой заданной точностью.

Отметим, что поиск коэффициентов наилучшего приближения с помощью решения системы уравнений (2.17) практически нсреализуем, поскольку с ростом порядка матрицы Грама ее определитель быстро стремится к нулю, и матрица становится плохо обусловленной. Решение системы линейных уравнений с такой матрицей приведет к значительной потере точности. Проверим это.

Пусть в качестве системы функций ф„ i =1, ..., П, выбираются степени, т. е. ф* = X 1 ", 1 = 1, ..., п, тогда, полагая в качестве отрезка аппроксимации отрезок , находим матрицу Грама

Матрицу Грама вида (2.19) называют еще матрицей Гильберта. Это классический пример так называемой плохо обусловленной матрицы.

С помощью MATLAB рассчитаем определитель матрицы Гильберта в форме (2.19) для некоторых первых значений п. В листинге 2.5 приведен код соответствующей программы.

Листинг 23

%Вычисление определителя матриц Гильберта %очищаем рабочую область clear all;

%выберем максимальное значение порядка %матрицы Гильберта птах =6;

%строим цикл для формирования матриц %Гильберта и вычисления их определителей

for n = 1: птах d(n)=det(hi I b(п)); end

%выводим значения определителей %матриц Гильберта

f о г та t short end

После отработки кода листинга 2.5, в командном окне MATLAB должны появиться значения детерминантов матриц Гильберта для первых шести матриц. В таблице ниже приведены соответствующие численные значения порядков матриц (п) и их определителей (d). Из таблицы отчетливо видно, сколь быстро определитель матрицы Гильберта стремится к нулю при росте порядка и, уже начиная с порядков 5, 6, становится неприемлемо малым.

Таблица значений определителя матриц Гильберта

Численная ортогонализация системы функций ф, i = 1, ..., П также приводит к заметной потере точности, поэтому чтобы учитывать большое число членов в разложении (2.16), необходимо либо проводить ортогонализацию аналитически, т. е. точно, либо пользоваться уже готовой системой ортогональных функций.

Если при интерполяции обычно используют в качестве системы базисных функций степени, то при аппроксимации в среднем в качестве базисных функций выбирают многочлены, ортогональные с заданным весом. Наиболее употребительными из них являются многочлены Якоби, частным случаем которых являются многочлены Лежандра и Чебышева. Используют также полиномы Лагсрра и Эрмита. Более подробно об этих полиномах можно узнать, например, в приложении Ортогональные полиномы книги .

Для того чтобы сгладить дискретные функции Альтмана, и тем самым внести в теорию идею непрерывности, применялось среднеквадратичное интегральное приближение многочленом разных степеней.

Известно, что последовательность интерполяционных многочленов по равноотстоящим узлам не обязательно сходится к функции, если даже функция бесконечно дифференцируема. Для приближаемой функций с помощью подходящего расположения узлов удаётся снизить степень полинома. . Структура функций Альтмана такова, что удобнее использовать приближение функции не с помощью интерполяции, а с построением наилучшего среднеквадратичного приближения в нормированном линейном пространстве. Рассмотрим основные понятия и сведения при построении наилучшего приближения . Задачи приближения и оптимизации ставятся в линейных нормированных пространствах.

Метрические и линейные нормированные пространства

К наиболее широким понятиям математики относятся "множество" и "отображение". Понятие "множество", "набор", "совокупность", "семейство", "система", "класс" в нестрогой теории множеств считаются синонимами.

Термин "оператор" тождествен термину "отображение". Термины "операция", "функция", "функционал", "мера" - частные случаи понятия "отображение" .

Термины "структура", "пространство" при аксиоматическом построении математических теорий также приобрёл в настоящее время основополагающую значимость. К математическим структурам принадлежат теоретико-множественные структуры (упорядоченные и частично упорядоченные множества); абстрактно-алгебраические структуры (полугруппы, группы, кольца, тела, поля, алгебры, решетки); дифференциальные структуры (внешние дифференциальные формы, расслоенные пространства) , , , , , , .

Под структурой понимается конечный набор, состоящий из множеств носителя (основное множество), числового поля (вспомогательное множество) и отображение, заданных на элементах носителя и числах поля. Если в качестве носителя взято множество комплексных чисел, то оно играет роль и основного, и вспомогательного множества. Термин "структура" тождественен понятию "пространство" .

Чтобы задать пространство, необходимо прежде всего задать множество-носителя со своими элементами (точками), обозначаемых латинскими и греческими буквами

В качестве носителя могут выступать множества элементов действительных (или комплексных): чисел; векторов, ; Матриц, ; Последовательностей, ; Функций;

В качестве элементов носителя могут выступать также множества: действительной оси, плоскости, трёхмерного (и многомерного) пространства, перестановки, движения; абстрактные множества.

Определение. Метрическое пространство есть структура, образующая тройку, где отображение есть неотрицательная действительная функция двух аргументов для любых x и y из M и удовлетворяющая трём аксиомам.

  • 1-- неотрицательность; , при.
  • 2- - симметричность;
  • 3- - аксиома рефлексивности.

где - это расстояния между элементами.

В метрическом пространстве задаётся метрика и формируется понятие о близости двух элементов из множества носителя.

Определение. Действительное линейное (векторное) пространство есть структура, где отображение - аддитивная операция сложения элементов, принадлежащих, а отображение - операция умножения числа на элемент из.

Операция означает, что для любых двух элементов однозначно определен третий элемент, называемый их суммой и обозначаемый через, причем выполняются следующие аксиомы.

Коммутативное свойство.

Ассоциативное свойство.

В существует особый элемент, обозначаемый через такой, что для любого выполняется.

для любого существует, такой, что.

Элемент называется противоположным к и обозначается через.

Операция означает, что для любого элемента и любого числа определен элемент, обозначаемый через и выполняется аксиомы:

Элемент (точки) линейных пространства называется также векторами. Аксиомами 1 - 4 задаётся группа (аддитивная), называемая модулем и представляющая собой структуру.

Если операция в структуре не подчиняется никакими аксиомам, то такую структуру называют группоидом. Эта структура предельно бедна; в ней нет ни одной аксиоме ассоциативности, то структура называется моноидом (полугруппа).

В структуре с помощью отображения и аксиомами 1-8 задаётся свойство линейности.

Итак, линейное пространство является групповым модулем, в структуру которого добавлена еще одна операция - умножения элементов носителя на число с 4 аксиомами. Если вместо операции задать наряду с еще одну групповую операцию умножения элементов с 4 аксиомами и постулировать аксиому дистрибутивности, то возникает структуру, называемая полем.

Определение. Линейное нормированное пространство есть структура, в которой отображение удовлетворяет следующие аксиомами:

  • 1. причём тогда и только тогда, когда.
  • 2. , .
  • 3. , .

И так в всего 11 аксиом.

Например, если в структуру поля вещественных чисел, где - действительные числа, добавить модуль, обладающий всеми тремя свойствами нормы, то поле вещественных чисел становится нормированным пространством

Распространены два способа введения нормы: либо путём явного задания интервального вида однородно-выпуклого функционала , , либо путём задания скалярного произведение , .

Пусть, тогда вид функционала можно задать бесчисленным количеством способов, меняя величину:

  • 1. , .
  • 2. , .

………………..

…………….

Второй распространённый способ приём задания состоит в том, что в структуру пространства вводится ещё одного отображение (функция двух аргументов, обычно обозначаемое через и называемое скалярным произведением).

Определение. Евклидово пространство есть структура в которой скалярное произведение содержит норму и удовлетворяет аксиомам:

  • 4. , причём тогда и только тогда, когда

В евклидовом пространстве норма порождается формулой

Из свойств 1 - 4 скалярного произведения следует, что выполняются все аксиомы нормы. Если скалярное произведение в виде, то норма будет вычисляться по формуле

Норму пространства невозможно задать с помощью скалярного произведения , .

В пространствах со скалярным произведением появляются такие качества, которые отсутствуют в линейных нормированных пространствах (ортогональность элементов, равенство параллелограмма, теорема Пифагора, тожество Аполлония, неравенство Птолемея . Введение скалярного произведения даёт способы более эффективного решения задач аппроксимации.

Определение. Бесконечная последовательность элементов в линейном нормированном пространстве называется сходящейся по норме (просто сходящейся или имеющей предел в), если существует такой элемент, что для любого найдется номер, зависящий от такой, что при выполняется

Определение. Последовательность элементов в называется фундаментальной, если для любого существует номер, зависящий от, что любого и выполняются (Треногин Колмогоров, Канторович, с 48)

Определение. Банаховым пространством называется такая структура, в которой любая фундаментальная последовательность сходится по норме.

Определение. Гильбертовым пространством называется такая структура в которой любая фундаментальная последовательность сходится по норме, порождённой скалярным произведением.

В предыдущей главе подробно рассмотрен один из самых распространенных способов приближения функций – интерполирование. Но этот способ не единственный. При решении разнообразных прикладных задач и построении вычислительных схем нередко используют и другие способы. В этой главе мы рассмотрим способы получения среднеквадратических приближений. Название приближений связано с метрическими пространствами, в которых рассматривается задача приближения функции. В главе 1 мы ввели понятия «метрическое линейное нормированное пространство» и «метрическое евклидово пространство» и увидели, что погрешность приближения определяется метрикой пространства, в котором рассматривается задача приближения. В разных пространствах понятие погрешности имеет разный смысл. Рассматривая погрешность интерполяции, мы не акцентировали на этом внимание. А в этой главе нам придется этим вопросом заняться более подробно.

5.1. Приближения тригонометрическими многочленами и многочленами Лежандра Пространство l2

Рассмотрим множество функций , интегрируемых с квадратом по Лебегу на отрезке
, то есть таких, что должен существовать интеграл
.

Поскольку выполняется очевидное неравенство , из интегрируемости с квадратом функций
и
должна следовать и интегрируемость с квадратом любой их линейной комбинации
, (где
и
 любые вещественные числа), а также интегрируемость произведения
.

Введем на множестве функций, интегрируемых с квадратом по Лебегу на отрезке
, операцию скалярного произведения

. (5.1.1)

Из свойств интеграла следует, что введенная операция скалярного произведения обладает почти всеми свойствами скалярного произведения в евклидовом пространстве (см. параграф 1.10, с. 57):


Только первое свойство выполняется не до конца, то есть не будет выполнено условие.

В самом деле, если
, то отсюда не следует, что
на отрезке
. Для того чтобы введенная операция обладала этим свойством, в дальнейшем договоримся не различать (считать эквивалентными) функции
и
,
для которых

.

С учетом последнего замечания, мы убедились, что множество интегрируемых с квадратом по Лебегу функций (точнее множество классов эквивалентных функций) образует евклидово пространство, в котором определена операция скалярного произведения по формуле (5.1.1). Это пространство называют пространством Лебега и обозначают
или короче.

Поскольку всякое евклидово пространство автоматически является и нормированным и метрическим, пространство
также является нормированным, и метрическим пространством. Норма (величина элемента) и метрика (расстояние между элементами) в нем обычно вводятся стандартным способом:


(5.1.2)


(5.1.3)

Свойства (аксиомы) нормы и метрики приведены в параграфе 1.10. Элементами пространства
являются не функции, а классы эквивалентных функций. Функции, принадлежащие одному классу, могут иметь разные значения на любом конечном или даже счетном подмножестве
. Поэтому приближения в пространстве
определяются неоднозначно. Эта неприятная особенность пространства
окупается удобствами использования скалярного произведения.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.

    курсовая работа , добавлен 14.04.2009

    Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.

    курс лекций , добавлен 06.03.2009

    Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа , добавлен 11.03.2013

    Численные методы решения систем линейных уравнений: Гаусса, простой итерации, Зейделя. Методы аппроксимации и интерполяции функций: неопределенных коэффициентов, наименьших квадратов. Решения нелинейных уравнений и вычисление определенных интегралов.

    курсовая работа , добавлен 27.04.2011

    Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.

    лабораторная работа , добавлен 14.08.2010

    Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.

    курсовая работа , добавлен 16.12.2015

    Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа , добавлен 30.04.2011

ЛАБОРАТОРНАЯ РАБОТА

СРЕДНЕКВАДРАТИЧНОЕ ПРИБЛИЖЕНИЕ ТАБЛИЧНО ЗАДАННЫХ ФУНКЦИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

Цель : Ознакомление студентов с основными методами интерполяции и аппроксимации таблично заданных функций. Закрепление на практике полученных знаний в области аппроксимации таких функций.

Задача : Научить студентов практическому применению полученных теоретических знаний при решении задач сглаживания результатов эксперимента полиномами, как при алгоритмизации таких задач, так и при их программировании.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Интерполяция и аппроксимация

В практике часто встречается ситуация, когда некоторая функция f (x ) задана таблицей ее значений в отдельных точках х = x 0 , x 1 , … , x n [a , b ], например, дискретные показания прибора во времени, а следует вычислить функцию f (x ) в некоторых промежуточных точках. Эту задачу можно решить приближенно, заменяя функцию f (x ) более простой непрерывной функцией F (x ). Существуют два основных способа такой замены: интерполяция и аппроксимация .

Суть интерполирования – в построении такой легко вычисляемой функции F (x ), которая совпадает с функцией f (x ) в точках х = x 0 , x 1 , … , x n . Иными словами, график функции F (x ) в плоскости Оху должен проходить через точки х = x 0 , x 1 , … , x n , в которых задана функция f (x ). При этом, точки х = x 0 , x 1 , … , x n называют узлами интерполирования, а функцию F (x ) – интерполяционной. В качестве интерполяционной функции в большинстве случаев выбирают полиномы. Так, линейная интерполяция состоит в простом последовательном соединении точек (x 0 , f (x 0)), (x 1 , f (x 1)), … ,

(x n , f (x n )) отрезками прямых, т.е. в построении n полиномов первой степени. Значение функции f (x ) в точке х *, где х * (x i ,x i +1), i = 0, 1, … , n – 1, вычисляется в этом случае достаточно просто:

f (x *) = f (x i ) + · (х *–x i ).

Квадратичная интерполяция состоит в соединении последовательных троек узлов интерполяции параболами. Кубическая интерполяция – четверок – кубическими параболами и т.д. Интерполяционные полиномы степени (n – 1)есть гладкие функции, проходящие через все узлы интерполяции. При наложении дополнительных условий на соединение функции F (x )в точках (x 1 , f (x 1)), (x 2 , f (x 2)), … , (x n -1 , f (x n -1)) получим т.н. сплайн-интерполяцию. Для построения интерполяционных многочленов разработано множество методов: Ньютона, Стирлинга, Лагранжа и др.

Во многих случаях, имея значения функции в n + 1 узлах, удобно вместо интерполяционного многочлена находить полином степени m <n , который бы хорошо приближал (аппроксимировал) рассматриваемую функцию. При этом требование совпадения функций f (x ) иF (x ) в точках (x 0 , f (x 0)), (x 1 , f (x 1)), … , (x n , f (x n )) заменяется на требование минимизации суммарного отклонения между значениями функций f (x ) и F (x ) в точках х = x 0 , x 1 , … , x n .

Одним из основных методов построения аппроксимизационного полинома является метод наименьших квадратов, по которому требуется, чтобы сумма квадратов отклонений между значениями функции и значениями приближающей функции в узлах должна быть минимальной. Почему квадратов? Потому что сами отклонения между значениями функций может быть как положительными, так и отрицательными, и их сумма не дает истинного представления о различии между функциями за счет компенсации положительныхи отрицательных значений. Можно взять модули отклонений, однако положительные квадраты этих отклонений более удобны в работе.

Среднеквадратическое приближение таблично заданных функций

(метод наименьших квадратов)

Пусть в узлах x 0 , x 1 , … , x n имеем значения у 0 , у 1 , … , у n функции f (x ). Среди полиномов m -й степени (m <n )

P m (x ) = a 0 + a 1 x + a 2 x 2 + … + a m x m (1)

найти такой, который доставляет минимум выражению

S = .(2)

Неизвестными являются коэффициенты полинома (1). Сумма (2) представляет собой квадратичную форму от этих коэффициентов. Кроме того, формула (2) показывает, что функция S = S (a 0 , a 1 , … , a m ) не может принимать отрицательных значений. Следовательно, минимум функции S существует.

Применяя необходимые условия экстремума функции S = S (a 0 , a 1 , … , a m ), получаем систему линейных алгебраических уравнений для определения коэффициентов a 0 , a 1 , … , a m :

, (k = 0, 1, 2, … , m )(3)

Полагая с p = , d p = , запишем систему (3) в матричном виде

С a = d , (4)

С = – матрица системы, а = {a 0 , a 1 , … , a m } T – вектор неизвестных, d = {d 0 , d 1 , … , d m } T – вектор правых частей системы.

Если среди узлов x 0 , x 1 , … , x n нет совпадающих и m n , то система (4) имеет единственное решение a 0 = ,a 1 = , … , a m = . Тогда полином

= + x + x 2 + … + x m

является единственным полиномом степени m , обладающим минимальным квадратичным отклонением S * = S min.

Погрешность среднеквадратического приближения функции характеризуется величиной δ = .

Самый простой и наиболее часто используемый вид аппроксимации (среднеквадратического приближения) функции – линейная. Приближение данных (x i , y i ) осуществляется линейной функцией y (х )= ax + b . На координатной плоскости (x , y ) линейная функция, как известно, представляется прямой линией.

Пример . Сгладить систему точек прямойy = ax + b .

х –1 0 1 2 3 4
у 0 2 3 3,5 3 4,5

Строим рабочую таблицу :

абочую таблицу:№ x i y i x i 2 x i y i ax i + b ax i + b y i (ax i + b y i ) 2
1 –1 0 1 0 0,81 0,81 0,6561
2 0 2 0 0 1,55 –0,45 0,2025
3 1 3 1 3 2,29 –0,71 0,5041
4 2 3,5 4 7 3,03 –0,47 0,2209
5 3 3 9 9 3,77 0,77 0,5929
6 4 4,5 16 18 4,51 0,01 0,001
9 16 31 37

Система для определенияa и b имеет вид: Решим ее с помощью

формул Крамера:

Δ = = 105, Δ 1 = = 78, Δ 2 = = 163,

a = = = 0,74, b = = = 1,55.

Искомое уравнение y = 0,74x + 1,55.