После абсолютно упругого столкновения двух тел. Столкновение тел. Абсолютно упругий и абсолютно неупругий удары. Тема: Законы сохранения в механике

Продемонстрировать абсолютно неупругий удар можно также с помощью шаров из пластилина (глины), движущихся навстречу друг другу. Если массы шаров m 1 и m 2 , их скорости до удара , то, используя закон сохранения импульса, можно записать:

Если шары двигались навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае – если массы и скорости шаров равны, то

Выясним, как меняется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии (диссипация энергии ). Эту «потерю» можно определить по разности кинетических энергий до и после удара:

.

Отсюда получаем:

(5.6.3)

Если ударяемое тело было первоначально неподвижно (υ 2 = 0), то

Когда m 2 >> m 1 (масса неподвижного тела очень большая), то и почти вся кинетическая энергия при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка.

Когда тогда и практически вся энергия затрачивается на возможно большее перемещение, а не на остаточную деформацию (например, молоток – гвоздь).

Абсолютно неупругий удар – пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

Законы сохранения импульса - фундаментальные законы природы. Примером применения этих законов может быть явление соударения. Абсолютно упругий и неупругий удары - изменение состояния тел в результате кратковременного взаимодействия при их столкновении.

Механизм взаимодействия

Простейшим видом взаимодействий физических тел является центральное столкновение шаров, имеющих идеальную геометрическую форму. Время контакта этих объектов укладывается в сотые доли секунды.

Согласно определению, центральным считается удар, при котором линия столкновения пересекает центры шаров. При этом траектория взаимодействия - это прямая, проведенная точно к элементу поверхности соприкосновения в момент контакта. В механике различают абсолютно упругий и неупругий удары.

Типы взаимодействий

Абсолютно неупругий удар наблюдается при столкновении двух тел из пластичных материалов или пластичного и упругого тел. После его совершения скорости соударяющихся объектов становятся одинаковыми.

Абсолютно упругий удар наблюдается при взаимодействии объектов, изготовленных из упругих материалов (например, двух шариков из твердых сортов стали либо шариков из некоторых видов пластмасс и т. д.).

Этапы

Процесс упругого соударения происходит в два этапа:

  • I этап - момент после начала столкновения. Силы, действующие на шарики, увеличиваются с ростом деформации. Увеличение деформации сопровождается изменением скорости объектов. Тела, скорость которых была больше, замедляют свое движение, а тела с меньшей скоростью ускоряются. Когда деформация станет максимальной, скорость шаров после абсолютно упругого удара становится равновесной.
  • II этап. С момента, который характеризует начало второго этапа упругого удара, значение деформаций уменьшается. При этом силы деформации расталкивают шарики. После исчезновения деформации, шарики удаляются и полностью восстанавливают свою первоначальную форму и движутся с разными скоростями. Таким образом, в конце второго этапа центральный абсолютно упругий удар превращает весь запас потенциальной энергии упругодеформированных тел в кинетическую энергию.

Изолированные системы

На практике ни один удар не является абсолютным (упругим либо неупругим). Система в любом случае взаимодействует с окружающим веществом, обменивается энергией и информацией со средой. Но для теоретических исследований допускается существование изолированных систем, в которых взаимодействуют исключительно объекты исследований. Например, возможен как абсолютно неупругий, так и абсолютно упругий удар шаров.

Внешние силы на такую систему не действуют либо их влияние скомпенсировано. В изолированной системе закон сохранения импульсов работает в полной мере - полный импульс между сталкивающимися телами сохраняется:

∑=m i v i =const.

Здесь «m» и «v» - масса некой частицы («i») изолированной системы и вектор ее скорости соответственно.

Для сохранения механической энергии (частного случая общего закона энергий) есть необходимость, чтобы силы, которые действуют в системе, были консервативными (потенциальными).

Консервативные силы

Консервативными называются силы, которые не превращают в прочие виды энергий механическую энергию. Эти силы всегда потенциальны - то есть работа, которую выполняют такие силы по замкнутому контуру, равна нулю. В противном случае силы называются диссипативными или неконсервативными.

В консервативных изолированных системах механическая энергия между сталкивающимися телами также сохраняется:

W=Wk+Wp=∑(mv 2 /2)+Wp=const.

Здесь Wk и Wp - кинетическая (k) и потенциальная (p) энергии соответственно.

Для проверки актуальности законов сохранения энергий (приведенных выше формул), если совершаются удары абсолютно упругих тел при условии, что до столкновения один из шаров не двигается (скорость неподвижного тела v 2 =0), ученые вывели следующую закономерность:

m 1 v 1 Ki=m 1 U 1 +m 2 U 2

(m 1 v 1 2)/2×Ke=(m 1 U 1 2)/2+(m 2 U 2 2)/2.

Здесь m 1 и m 2 - масса первого (ударного) и второго (неподвижного) шаров. Ki и Ke - коэффициенты, показывающие, во сколько раз увеличился импульс двух шаров (Ki) и энергия (Ke) в момент, когда совершается абсолютно упругий удар. v 1 - скорость подвижного шара.

Поскольку суммарный импульс системы должен сохраняться при любых условиях столкновений, то следует ожидать, что коэффициент восстановления импульса будет равен единице.

Расчет силы удара

Скорость ударного (отклоняемого на нити) шара, которая налетает на неподвижный (свободно подвешенный на нити) шар, определяется формулой закона сохранения энергии:

m 1 gh=(m 1 v 1 2)/2

h=l-lcosα=2lsin 2 (α/2).

Здесь h - величина отклонения плоскости ударного шара относительно плоскости неподвижного шара. l - длина нитей (абсолютно одинаковы), на которых подвешены шары. α - угол отклонения ударного шара.

Соответственно, абсолютно упругий удар при столкновении ударного (отклоняемого на нити) и неподвижного (свободно висящего на нити) шара рассчитывается по формуле:

v 1 =2sin(α/2)√gl.

Установка для исследований

На практике для расчета сил взаимодействия применяют простую установку. Она предназначена для изучения видов ударов двух шаров. Установка представляет собой треножник на трех винтах, которые позволяют выставить его по горизонтали. На треножнике расположена центральная стойка, к верхнему концу которой прикрепляют специальные подвесы для шаров. На штанге закреплен электромагнит, притягивающий и удерживающий в начале эксперимента в отклоненном состоянии один из шаров (ударный шар).

Величину начального угла отклонения этого шара (коэффициент α) можно определить по расходящейся в обе стороны дугообразной шкале. Величина ее искривления соответствует траектории перемещения взаимодействующих шаров.

Процесс исследования

Вначале подготавливается пара шаров: в зависимости от заданий берутся упругие, неупругие либо два разноплановых шара. В специальную таблицу записываются массы шаров.

Затем к электромагниту пристыковывается ударный элемент. По шкале определяют угол отклонения нити. Затем электромагнит отключают, он теряет притягивающие свойства, и шар по дуге устремляется вниз, сталкиваясь со вторым, свободным, неподвижно висящим шаром, который в результате импульса (удара) отклоняется на определенный угол. Величину отклонения фиксируют по второй шкале.

Абсолютно упругий удар рассчитывается на основании данных эксперимента. Для подтверждения правдивости законов сохранения импульса и энергии при упругом и неупругом ударах двух шаров определяют их скорости до и после столкновения. В основу положен баллистический метод измерения скорости движения шаров по величине их отклонения. Эта величина отсчитывается по шкалам, изготовленным в виде дуг окружности.

Особенности расчетов

При расчетах удара в классической механике не учитывают ряд показателей:

  • время соударения;
  • степень деформации взаимодействующих объектов;
  • неоднородность материалов;
  • скорость деформации (передачи импульса, энергии) внутри шара.

Столкновение бильярдных шаров - показательный пример упругого удара.

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение) - это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Исходя из данного определения, кроме явлений, которые можно отнести к ударам в прямом смысле этого слова

(столкновения атомов или биллиардных шаров), сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. При ударе в телах возникают столь значительные внутренние силы, что внешними силами, действующими на них, можно пренебречь. Это позволяет рассматривать соударяющиеся тела как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффициентом восстановления :

= v" n /v n .

Если для сталкивающихся тел =0, то такие тела называются абсолютно неупругими, если =1-абсолютно упругими.

На практике для всех тел 0<<1 (например, для стальных шаров 0,56, для шаров из слоновой кости 0,89, для свинца 0). Однако в некоторых случаях тела можно с большой точностью рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.

Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами m 1 и m 2 до удара через v 1 и v 2 , после удара - через v" 1 и v" 2 (рис. 18). При прямом центральном ударе векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицательное - движению влево.

При указанных допущениях законы сохранения имеют вид

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

Решая уравнения (15.3) и (15.5), находим

Разберем несколько примеров.

Проанализируем выражения (15.8) и (15.9) для двух шаров различных масс:

а) m 1 = m 2 . Если второй шар до удара висел неподвижно (v 2 =0) (рис. 19), то после удара остановится первый шар (v" 1 =0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара (v" 2 = v 1 );

б) m 1 >m 2 .

Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (v" 1 1 ). Скорость второго шара после удара больше, чем скорость первого после удара (v" 2 >v" 1) (рис.20);

в) m 1 <m 2 . Направление движения первого шара при ударе изменяется - шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т.е. v" 2 1 (рис. 21);

г) m 2 >>m 1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что v" 1 =-v 1 , v" 2 2 m 1 v 1 /m 2 0.

2) При m 1 =m 2 выражения (15.6) и (15.7) будут иметь вид

v" 1 =v 2 , v" 2 =v 1 ,

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу (рис. 22).

Если массы шаров m 1 и m 2 , их скорости до удара v 1 и v 2 , то, используя закон сохранения импульса, можно записать

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае если массы шаров равны (m 1 = m 2 ), то

v = (v 1 +v 2)/2.

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними дей-

ствуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:

Если ударяемое тело было первоначально неподвижно (v 2 = 0), то

Когда m 2 > > m 1 (масса неподвижного тела очень большая), то v< 1 и почти вся кинетическая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m 1 >>m 2 ), тогда v v 1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар - пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

Контрольные вопросы

В чем различие между понятиями энергии и работы?

Как найти работу переменной силы?

Какую работу совершает равнодействующая всех сил, приложенных к телу, равномерно движущемуся по окружности?

Что такое мощность? Вывести ее формулу.

Дайте определения и выведите формулы для известных вам видов механической энергии. Какова связь между силой и потенциальной энергией?

Почему изменение потенциальной энергии обусловлено только работой консервативных сил?

В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?

Необходимо ли условие замкнутости системы для выполнения закона сохранения механической энергии?

В чем физическая сущность закона сохранения и превращения энергии? Почему он является фундаментальным законом природы?

Каким свойством времени обусловливается справедливость закона сохранения механической энергии?

Что такое потенциальная яма? потенциальный барьер?

Какие заключения о характере движения тел можно сделать из анализа потенциальных кривых?

Как охарактеризовать положения устойчивого и неустойчивого равновесия? В чем их различие?

Чем отличается абсолютно упругий удар от абсолютно неупругого?

Как определить скорости тел после центрального абсолютно упругого удара? Следствием каких законов являются эти выражения?

Задачи

3.1. Определить: 1) работу поднятия груза по наклонной плоскости; 2) среднюю и 3) максимальную мощности подъемного устройства, если масса груза 10 кг, длина наклонной плоскости 2 м, угол ее наклона к горизонту 45°, коэффициент трения 0,1 и время подъема 2 с.

3.3. Пренебрегая трением, определить наименьшую высоту, с которой должна скатываться тележка с человеком по желобу, переходящему в петлю радиусом 10 м, чтобы она сделала полную петлю и не выпала из желоба.

3.4. Пуля массой m= 10 г, летевшая горизонтально со скоростью v = 500 м/с, попадает в баллистический маятник длиной l = 1 м и массой М = 5 кг и застревает в нем. Определить угол отклонения маятника. [ 18°30" ]

3.5. Зависимость потенциальной энергии частицы в центральном силовом поле от расстояния r до

центра поля задается выражением П(r) =A/r 2 -B/r, где А и В - положительные постоянные.

Определить значение r 0 , соответствующее равновесному положению частицы. Является ли это положение положением устойчивого равновесия? [ r 0 = 2А/В]

3.6. При центральном абсолютно упругом ударе движущееся тело массой m 1 ударяется в покоящееся тело массой m 2 , в результате чего скорость первого тела уменьшается в n = 1,5 раза. Определить: 1) отношение m 1 / m 2 ; 2) кинетическую энергию T" 2 , с которой начнет двигаться второе тело, если первоначальная кинетическая энергия первого тела T 1 = 1000 Дж. [ 1) 5; 2) 555 Дж ]

3.7. Тело массой m 1 =4 кг движется со скоростью v 1 =3 м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, определить количество теплоты, выделившееся при ударе.

* У. Гамильтон (1805-1865) - ирландский математик и физик.

Основной закон динамики поступательного движения для замкнутой системы тел: , следовательно: .

Таким образом, импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени . Этот закон справедлив не только в классической механике, но и в квантовой механи­ке для замкнутых систем микрочастиц. Закон сохранения импульса - фундаментальный закон природы.

Закон справедлив и для незамкнутых систем, если геометрическая сумма всех внешних сил равна нулю . Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. В неинерциальных системах отсчета закон сохранения импульса несправедлив.

При соударении двух тел существуют 2 предельных вида удара: абсолютно упругий и абсолютно неупругий.

Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические виды энергии. При таком ударе кинетическая энергия полностью или частично переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоро­стями, модуль и направления которых определяются двумя условиями: сохранением полной механической энергии и сохранением полного импульса системы тел.

При абсолютно упругом центральном ударе (удар происходит по прямой, соединяющей центры масс шаров) возможны два случая:

  1. Шары двигаются навстречу друг другу.
  2. Один шар догоняет другой (рисунок 22).


Положим, что система замкнутая и вращение шаров отсутствует. Пусть массы шаров m 1 и m 2 , скорости их до удара и , а после удара и соответственно. Скорости шаров после удара определяются при решении системы уравнений, составленной согласно закону сохранения механической энергии и закону сохранения импульса:

- закон сохранения энергии.

Закон сохранения импульса.

Если m 1 = m 2 , то .

Для численных расчетов нужно спроектировать векторы скоростей на ось, вдоль которой движутся шары, т.е. учесть направление скоростей соответствующими знаками .

Из полученных формул можно определить скорость шара после удара о движущуюся или неподвижную стенку:

Абсолютно неупругий удар характеризуется тем, что потенциальной энергии деформа­ции при таком ударе не возникает. Кинетическая энергия тел полностью или частично превращается во внут­реннюю энергию. После удара столкнувшиеся тела либо двигаются с одинаковой скоростью, либо покоятся (рисунок 23).

До удара


При абсолютно неупругом ударе выполняется лишь закон сохранения импульса системы. Закон сохранения механической энергии не выполняется .

Рассмотрим абсолютно неупругий удар 2-х материальных точек, образующих замкнутую систему. Пусть массы материальных точек m 1 и m 2 , а скорости до удара - и , а после удара - . Суммар­ный импульс системы после удара должен быть таким же, как и до удара

Скорость системы тел после удара .

В численных расчетах используютсяпроекции векторов скоростей на направление оси, вдоль которой двигаются тела.

Контрольные вопросы:

1. Изложите закон сохранения импульса.

2. Расскажите об абсолютно упругом ударе.

3. Какие законы сохранения действуют при абсолютно упругом ударе?

4. Как определить скорости двух тел после абсолютно упругого удара?

5. Что такое абсолютно неупругий удар? Какой закон сохранения действует при абсолютно неупругом ударе?

6. Как вычислить скорость тел после абсолютно неупругого удара?

Выберите правильные ответы на поставленные вопросы:

1. При абсолютно упругом ударе двух шаров с начальными импульсами и и кинетическими энергиями Е 1 и Е 2 соответственно, суммарный импульс Р шаров и кинетическая энергия Е сразу после соударения… ○ 1. …Р = р 1 +р 2 , E > E 1 +E 2 . ○ 2. …Р = р 1 +р 2 , E < E 1 +E 2 . ○ 3. …Р ≠ р 1 +р 2 , E = E 1 +E 2 . ○ 4. …Р = р 1 +р 2 , E = E 1 +E 2 . ○ 5. …Р ≠ р 1 +р 2 , E < E 1 +E 2 . 4. Три массивных диска вращаются соосно, как показано на рисунке. Как изменится момент импульса системы после сцепления колес? Трением в оси пренебречь. ○ 1. Увеличится в девять раз. ○ 2. Увеличится в три раза. ○ 3. Не изменится. ○ 4. Уменьшится в три раза. ○ 5. Уменьшится в девять раз.
2. Человек стоит в центре массивного диска, свободно вращающегося вокруг вертикальной оси. Как изменится угловая скорость вращения диска если он разведет руки с гантелями в стороны? ○ 1. Увеличится, так как будет произведена полезная работа. ○ 2. Не изменится согласно закону сохранения импульса. ○ 3. Уменьшится согласно закону сохранения момента импульса. ○ 4. Увеличится, так как возрастет кинетическая энергия. ○ 5. Не изменится согласно закону сохранения энергии. 5. Два шара одинаковой массы m со скоростями и сталкиваются абсолютно неупруго и приобретают скорости и . Какое из утверждений справедливо? ○ 1. V 1 =V 2 =V, причем . ○ 2. V 1 =V 2 =V, причем . ○ 3. V 1 ≠V 2 , причем ○ 4. V 1 ≠V 2 , причем ○ 5. V 1 =V 2 =V, причем .
3. Чему равен импульс и энергия после встречного абсолютно неупругого удара двух тел? ○ 1. E=E 1 +E 2 ○ 2. EE 1 +E 2 ○ 4. E≠E 1 +E 2 ○ 5. E≠E 1 +E 2 6. Одинаковые моменты внешних сил действуют на два шара, которые вращаются на неподвижных осях. Момент инерции первого шара больше, чем второго. Угловое ускорение первого шара… ○ 1. …больше, чем у второго. ○ 2. …меньше, чем у второго. ○ 3. …такое же, как у второго. ○ 4. …может быть больше или меньше, чем у второго в зависимости от соотношения масс шаров. ○ 5. …может быть больше или меньше, чем у второго в зависимости от соотношения радиусов шаров.

Закон всемирного тяготения

Изучением движения планет люди занимались, начиная с глубокой древности. Астроном Иоганн Кеплер обработал результаты многочисленных наблюдений и изложил законы движения планет:

Впоследствии Ньютон на основании законов Кеплера и основных законов динамики от­крыл закон всемирного тяготения: Все тела (материальные точки) независимо от их свойств, притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропор­циональной квадрату расстояния между ними F = G , где:

G - гравитационная постоянная. G = 6,672 10 -11

Сила тяжести

Согласно второму закону Ньютона любое тело вблизи поверхности Земли начинает дви­гаться с ускорением свободного падения под действием силы тяжести .

Для тел, находящихся на поверхности Земли: , где М - масса Земли, m - масса тела, R 3 - радиус Земли. Отсюда:

Если тело массой m находится на высоте h над поверхностью Земли, то . Таким образом, сила тяжести уменьшается с удалением от Земли.

Работа в поле тяготения

Если тело массой перемещать с расстояния от Земли до расстояния (рисунок 24), то работа по его перемещению:

Эта работа не зависит от траектории, а определяется лишь начальным и конечным положением тела. Следо­вательно, силы тяготения - консервативные, а поле тяготения – потенциальное.

Работа, совершаемая консервативными силами:

При R 2 ®¥ ®0.

Потенциальная энергия двух тел, находящихся на расстоянии .

Если тело массой m находится на высоте h над поверхностью Земли, то его потенциальная энергия , где

R 3 - радиус Земли R 3 = 6,4-10 6 м, М - масса Земли. М = 6 × 10 24 кг.

Невесомость

Вес тела – это сила, действующая на опору или на подвес. Состояние тела, при котором оно движется только под действием силы тяжести, называется состоянием невесомости . Если к телу приложена не только сила тяготения , но и другая сила , создающая уско­рение тела , то дополнительная сила должна удовлетворять условию: .