Высота образования серебристых облаков. Феномен серебристых облаков может быть связан с древним извержением вулкана. Свойства и виды

МОСКВА, 20 июн — РИА Новости. Феномен возникновения в верхних слоях атмосферы Земли так называемых серебристых облаков может быть связан с древним извержением вулкана Кракатау, говорится в совместном сообщении Роскосмоса и московского планетария.

Серебристые облака — самые высокие облачные образования в земной атмосфере, возникающие на высотах 70-95 километров. Их называют также полярными мезосферными облаками (polar mesospheric clouds, PMC) или ночными светящимися облаками (noctilucent clouds, NLC). Это светлые полупрозрачные облака, которые иногда видны на фоне темного неба летней ночью в средних и высоких широтах.

"Тот факт, что это атмосферное явление не наблюдалось до 1885 года, многих ученых привел к мысли, что их появление связано с мощным катастрофическим процессом на Земле — извержением вулкана Кракатау в Индонезии 27 августа 1883 года, когда в атмосферу было выброшено около 35 миллионов тонн вулканической пыли и огромная масса водяного пара. Высказывались и другие гипотезы: метеорная, техногенная, гипотеза о "солнечном дожде". Но до сих пор многие факты в этой области неполны и противоречивы, поэтому серебристые облака продолжают оставаться волнующей проблемой для многих естествоиспытателей", — отмечается в сообщении.

Как образуются серебристые облака

Серебристые облака образуются в верхних слоях атмосферы, на высотах около 90 километров, и освещаются Солнцем, неглубоко опустившимся под горизонт (поэтому в Северном полушарии они наблюдаются в северной части неба, а в Южном полушарии — в южной). Для их образования необходимо сочетание трех факторов: достаточное количество водяного пара, очень низкая температура, наличие мельчайших пылевых частиц, на которых конденсируются пары воды, превращаясь в кристаллики льда.

"При формировании серебристых облаков центрами конденсации влаги, вероятно, служат частицы метеоритной пыли. Солнечный свет, рассеянный крошечными кристаллами льда, дает облакам их характерный голубовато-синий цвет. Из-за своего высотного положения серебристые облака светятся только в ночное время, рассеивая солнечный свет, который попадает на них из-под горизонта. Днем, даже на фоне чистого голубого неба эти облака не видны: очень уж они тонкие, "эфирные". Лишь глубокие сумерки и ночная тьма делают их заметными для наземного наблюдателя. Правда, с помощью аппаратуры, поднятой на большие высоты, эти облака можно регистрировать и в дневное время. Легко убедиться в поразительной прозрачности серебристых облаков: сквозь них прекрасно видны звезды", — отмечают исследователи.

Серебристые облака в Северном полушарии

Наблюдать серебристые облака можно лишь в летние месяцы в Северном полушарии в июне-июле, обычно с середины июня до середины июля, и лишь на географических широтах от 45 до 70 градусов, причем в большинстве случаев они чаще видны на широтах от 55 до 65 градусов. В Южном полушарии их наблюдают в конце декабря и в январе на широтах от 40 до 65 градусов. В это время года и на этих широтах Солнце даже в полночь опускается не очень глубоко под горизонт, и его скользящие лучи освещают стратосферу, где на высоте в среднем около 83 километров появляются серебристые облака. Как правило, они видны невысоко над горизонтом, на высоте 3-10 градусов в северной части неба (для наблюдателей Северного полушария). При внимательном наблюдении их замечают ежегодно, но высокой яркости они достигают далеко не каждый год.

Серебристые облака - самые высокие облачные образования в земной атмосфере, возникающие на высотах 70-95 км. Их называют также полярными мезосферными облаками (polar mesospheric clouds, PMC) или ночными светящимися облаками (noctilucent clouds, NLC). Это светлые полупрозрачные облака, которые иногда видны на фоне темного неба летней ночью в средних и высоких широтах.

«Облака эти ярко блистали на ночном небе чистыми, белыми, серебристыми лучами, с лёгким голубоватым отливом, принимая в непосредственной близости от горизонта жёлтый, золотистый оттенок» - так описывает ночные светящиеся облака Витольд Карлович ЦЕРАСКИЙ, впервые наблюдавший их 12 июня 1885 года в Москве.

Серебристые облака образуются в верхних слоях атмосферы, на высотах 80-90 км и освещаются Солнцем, неглубоко опустившимся под горизонт (поэтому в Северном полушарии они наблюдаются в северной части неба, а в Южном полушарии - в южной). Для их образования необходимо сочетание трёх факторов: достаточное количество водяного пара; очень низкая температура; наличие мельчайших пылевых частиц, на которых конденсируются пары воды, превращаясь в кристаллики льда.

При формировании серебристых облаков центрами конденсации влаги, вероятно, служат частицы метеоритной пыли. Солнечный свет, рассеянный крошечными кристаллами льда, дает облакам их характерный голубовато-синий цвет. Из-за своего высотного положения серебристые облака светятся только в ночное время, рассеивая солнечный свет, который попадает на них из-под горизонта. Днем, даже на фоне чистого голубого неба эти облака не видны: очень уж они тонкие, «эфирные». Лишь глубокие сумерки и ночная тьма делают их заметными для наземного наблюдателя. Правда, с помощью аппаратуры, поднятой на большие высоты, эти облака можно регистрировать и в дневное время. Легко убедиться в поразительной прозрачности серебристых облаков: сквозь них прекрасно видны звезды.

Наблюдать серебристые облака можно лишь в летние месяцы в Северном полушарии в июне-июле, обычно с середины июня до середины июля, и лишь на географических широтах от 45 до 70 градусов, причем в большинстве случаев они чаще видны на широтах от 55 до 65 градусов. В Южном полушарии их наблюдают в конце декабря и в январе на широтах от 40 до 65 градусов. В это время года и на этих широтах Солнце даже в полночь опускается не очень глубоко под горизонт, и его скользящие лучи освещают стратосферу, где на высоте в среднем около 83 км появляются серебристые облака. Как правило, они видны невысоко над горизонтом, на высоте 3-10 градусов в северной части неба (для наблюдателей Северного полушария). При внимательном наблюдении их замечают ежегодно, но высокой яркости они достигают далеко не каждый год.

До настоящего времени в научном сообществе нет единого мнения относительно происхождения серебристых облаков. Тот факт, что это атмосферное явление не наблюдалось до 1885 г., многих учёных привел к мысли, что их появление связано с мощным катастрофическим процессом на Земле - извержением вулкана Кракатау в Индонезии 27 августа 1883 г., когда в атмосферу было выброшено около 35 млн тонн вулканической пыли и огромная масса водяного пара. Высказывались и другие гипотезы: метеорная, техногенная, гипотеза о «солнечном дожде» и т.п. Но до сих пор многие факты в этой области неполны и противоречивы, поэтому серебристые облака продолжают оставаться волнующей проблемой для многих естествоиспытателей.

«Астрономия для всех» совместная рубрика РОСКОСМОСА и Московского планетария (www.planetarium-moscow.ru). В ней рассказывается о Солнечной системе и её объектах, астрономических явлениях и интересных данных о безграничном космосе. Следите за астроновостями на официальных сайтах и страницах РОСКОСМОСА и Московского планетария во всех популярных социальных сетях (хэштег #АстрономияДляВсех). Мы ЗА популяризацию астрономии и возрождение интереса к науке!

На закате Солнца можно наблюдать самые фантастические цвета и причудливые картины. Иногда в голову приходит мысль, что если это правдиво нарисовать, то люди не поверят - скажут, что такого не бывает, и что художник преувеличил действительность. Мы привыкли думать, что все это физика, все объясняется преломлением света в слоях атмосферы. Однако есть явления на небе, которые все еще не имеют точного объяснения и которыми давно занимаются ученые метеорологи, физики, астрономы. Одно из таких явлений - серебристые облака.

Серебристые облака. Фото: mygeos.com

Серебристые облака — это очень красивое и сравнительно редкое атмосферное явление, которое можно наблюдать в широтах между 43° и 65° летом в период коротких ночей, в глубоких сумерках. Это самые высокие облака в атмосфере Земли, они образуются в мезосфере на высоте около 85 км и видны только тогда, когда освещены солнцем из-за горизонта, в то время как более низкие слои атмосферы находятся в земной тени. Отличить мезосферные облака от обычных низких тропосферных довольно просто: последние видны на фоне вечерней зари тёмными, а первые — светлыми и даже как бы светящимися, т.к. зашедшее солнце может "подсвечивать" только достаточно "высокие" объекты.

Оптическая плотность мезосферных облаков ничтожна, и через них зачастую проглядывают звезды. Неудивительно, что эти облака наблюдаются преимущественно в самые короткие ночи в высоких широтах: именно при таких условиях, когда солнце заходит ненадолго и не далеко за горизонт. Интересно, что серебристые облака передвигаются очень быстро - их средняя скорость 100 метров в секунду.

Природа серебристых облаков полностью не изучена. Впервые серебристые облака заметили в 1885 году, спустя два года после извержения вулкана Кракатау. Пепел, выброшенный этим вулканом, вызывал настолько великолепные закаты, что созерцание предзакатного неба стало очень популярным занятием. Одним из таких наблюдателей был немецкий ученый Т. Бэкхаус (Backhouse T.W.), заметивший на полностью черном небе тонкие, мерцающие голубоватым светом, серебряные полосы и описавший их в своей статье. Приват-доцент Московского университета Витольд Карлович Цераский, который наблюдал серебристые облака 12 июня 1885 года, также заметил, что эти облака, ярко выделяющиеся на фоне сумеречного неба, становились совершенно невидимыми, когда выходили за пределы сумеречного сегмента неба. Он назвал их «ночными светящимися облаками». Первоначально ученые связывали появление серебристых облаков с вулканической пылью, однако явление наблюдалось достаточно часто и при отсутствии извержений вулканов. В. К. Цераский совместно с астрономом из Пулковской обсерватории А. А. Белопольским, работавшим в это время в Московской обсерватории, изучил серебристые облака и определил их высоту, которая по его наблюдениям составляла от 73 до 83 км. Это значение подтвердил через 3 года немецкий метеоролог Отто Иессе (O.Jesse).

Исследователь Тунгусского метеорита Л. А. Кулик в 1926 году предложил метеорно-метеоритную гипотезу образования серебристых облаков, согласно которой метеорные частицы, попавшие в атмосферу Земли, являются ядрами конденсации водяного пара. Однако эта теория не объясняла их характерную тонкую структуру, сравнимую со структурой перистых облаков. В 1952 году И. А. Хвостиков выдвинул гипотезу, получившую название конденсационной (или ледяной), согласно которой серебристые облака имеют строение, подобное строению перистых облаков, состоящих из кристалликов льда.

Недавно теория метеорного происхождения серебристых облаков была подтверждена НАСА. "Мы обнаружили в составе серебристых облаков частички "метеорного дыма". Это открытие подтверждает теорию о том, что частички метеорной пыли являются зародышами, вокруг которых формируются кристаллы серебристых облаков»,- сообщил научный руководитель программы NASA AIM (Aeronomy of Ice in the Mesosphere) Джеймс Рассел из Хемптонского университета.

Каждый день на Землю выпадает больше тонны метеорной пыли. Влетая в атмосферу на огромных скоростях, эта пыль в большинстве своем полностью сгорает на высотах 70-100 км, оставляя за собой "дым", состоящий из микроскопических частиц. Эти частички образуют своего рода центры кристаллизации, вокруг которых молекулы воды образуют ледяные кристаллики. Но в отличие от кристаллов, образующихся в обычных облаках, кристаллы серебристых облаков очень мелкие. Примерно в 10-100 раз мельче, чем кристаллы дождевых облаков. Этим объясняется необычный синеватый оттенок серебристых облаков, так как мелкие кристаллы льда лучше преломляют свет более коротковолновой части спектра - синей и фиолетовой.

В настоящее время не до конца ясна природа появления на высоте 80 км в достаточном количестве водяного пара, необходимого для образования серебристых облаков. В 2012 году, после 5 лет работы спутника AIM, была опубликована новая гипотеза о природе появления воды в мезосфере, которая смогла объяснить, почему облака появились 130 лет назад, а до этого не наблюдались. Согласно этой теории, источником образования воды является газ метан, которым атмосфера Земли начала интенсивно обогащается, начиная с конца позапрошлого века. Повышению содержания метана в атмосфере во многом способствует промышленные разработки нефтяных и газовых месторождений, захоронения бытовых и промышленных отходов и т.д. По своему парниковому эффекту метан в десятки раз превосходит двуокись углерода. Но CO 2 тяжелее воздуха и потому скапливается непосредственно у поверхности Земли и при этом еще "утилизируется" растениями. Метан легче воздуха и поднимается вверх до 10-12 км. При этом часть молекул метана под воздействием солнечной радиации и атмосферного кислорода и озона разлагаются на молекулы воды, которые под действием конвективных потоков поднимаются еще выше, до 70-80 км. Там они, конденсируясь на метеорной пыли, и порождают серебристые облака. Таким образом, ученые считают, что серебристые облака могут быть своего рода индикатором чрезмерного скопления метана и последующего за этим глобального потепления из-за парникового эффекта.

Исследования серебристых облаков продолжаются. "Ночные светящиеся облака", или "полярные мезосферные облака", как их еще называют, служат главным источником информации о перемещении воздушных масс в верхних слоях атмосферы, что делает их изучение еще более насущной и важной задачей. Именно эту цель и преследует проект PoSSUM (Polar Suborbital Science in the Upper Mesosphere) под руководством Джейсона Раймуллера. Исследователь поясняет: "Идея состоит в том, чтобы создать лабораторию для изучения серебристых облаков. Речь идет о портативной лаборатории, которая размещалась бы на борту летательного аппарата и производила бы нужные нам измерения во время суборбитального полета. Один из самых важных приборов этой лаборатории - лазерный радар. Рассеяние лазерных импульсов на весьма редких на этой высоте молекулах озона, азота, кислорода, аргона и углекислого газа позволит отслеживать протекающие в мезосфере термодинамические процессы." Проект PoSSUM предусматривает распыление в мезосфере триметилалюминия - причем регистрировать светящиеся шлейфы предполагается не с поверхности земли, как это происходило ранее в рамках проекта ATREX, а с борта самолетов на высоте около 6,5 тысяч метров.

(на высоте 80-85 км над поверхностью земли) и видимые в глубоких сумерках . Наблюдаются в летние месяцы в широтах между 43° и 60° (северной и южной широты).

Мезосфера (от греч. μεσο- - «средний» и σφαῖρα - «шар», «сфера») - слой атмосферы на высотах от 40-50 до 80-90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50° C ) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80° C . Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном . Термин принят Географическим и геофизическим союзом в 1951 году .

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80% азота и 20% кислорода .

Мезосфера отделяется от нижележащей стратосферы стратопаузой , а от вышележащей термосферы - мезопаузой . Мезопауза в основном совпадает с турбопаузой .

Примеры серебристых облаков


Серебристое облако на закате. Отражение солнечного света

Серебристы облака ночью. Отражение солнечного света.


Серебристые облака ночью. Источник света не виден, но это Солнце


Серебристые облака отражающие наземное освещение.


Серебристые облака преломляющие свет. И вряд ли это на высоте 50 км…


Серебристые облака создают впечатление «дополнительной» подсветки (фото из моего окна) Фото:


Так раскрашивалось небо этим летом (фото из моего окна).

Всего несколько сотен лет назад Земля была полна неизведанного, и, чтобы закрасить белые пятна, на географических картах рисовали гипотетических аборигенов с песьими головами и человеческими лицами на животах. С тех пор загадок на нашей планете поубавилось. Тем интереснее те, которые современная наука все еще не может разгадать…

Сергей Сысоев

Поляризация света Свет представляет собой электромагнитную волну. Поляризация для электромагнитных волн — это явление направленного колебания векторов напряженности электрического и магнитного полей. Линейная поляризация — это частный случай поляризации, когда колебания вектора напряженности электрического поля лежат в одной плоскости

Сегодня для изучения атмосферы широко применяются так лидарные установки (LIDAR, англ. Light Identification, Detection and Ranging), в которых источником светового луча служит лазер. Небольшая часть его излучения, рассеявшись в атмосфере, возвращается назад и улавливается приемником. Это позволяет по времени прихода отраженного сигнала вычислить расстояние от установки до рассеявшей сигнал области атмосферы. На снимке — лидар обсерватории Pierre Auger (Аргентина)

На схеме наглядно изображен принцип действия лидарной установки. К сожалению, метод имеет непреодолимое ограничение: для него необходимо чистое небо — в плотной облачности лазерный луч теряется практически полностью

Серебристые облака образуются на высоте примерно 80 км, в области, пограничной между мезо- и термосферой, — так называемой мезопаузе. Мезосфера холодна — температура в ней опускается до -150°С. Термосфера же характеризуется очень высокими температурами — воздух (если эту чудовищно разреженную субстанцию можно так назвать) под действием солнечного излучения разогревается порой до 1500 К. Концентрация молекул газов в термосфере настолько мала, что привычные нам механизмы переноса тепловой энергии практически не работают, и единственный способ остыть — излучать энергию. В таких непростых условиях и «обитают» серебристые облака


Причина, по который серебристые облака наблюдаются ночью, а не днем, понятна из приведенной схемы. В то время как наблюдатель находится еще на «ночной территории», серебристые облака попадают в освещенную солнцем зону;. Серебристые облака «любят» не просто ночь, а ночь летнюю. Причина этого проста. Как ни странно, верхняя мезосфера сильнее всего охлаждается именно летом: виновата в этом динамика воздушных потоков в атмосфере. С центрами кристаллизации также нет проблем — ведь микрочастицы метеорного происхождения в мезосфере действительно присутствуют

В июне 1885 года с интервалом в несколько дней несколькими европейскими астрономами было замечено необычное явление: странные облака не виданной ранее структуры, светящиеся в вечерних либо предутренних сумерках, когда Солнце находилось ниже горизонта. В Германии это явление наблюдали астрономы Отто Йессе и Томас Уильям Бэкхаус, в Австро-Венгрии — Вацлав Ласка, в России — Витольд Карлович Цераский. Поскольку все первые наблюдения были сделаны независимо друг от друга, считать первооткрывателем кого-то одного было бы несправедливо. Наиболее серьезное внимание новому явлению уделили Йессе и Цераский. Последнему удалось с приемлемой точностью установить высоту новых облаков над поверхностью Земли — порядка 75 верст. Он же впервые установил ничтожную оптическую плотность облаков — блеск «закрытых» ими звезд почти не терял силы! Йессе также провел соответствующие измерения, но с несколько меньшей точностью. Зато именно он придумал распространенное с тех пор название — «серебристые облака». В англоязычной литературе этот феномен обычно называется noctilucent clouds или (особенно в материалах NASA) polar mesospheric сlouds — PMC.

Условия существования

К концу XIX века в Европе было множество астрономов, регулярно наблюдавших небосвод. Ни один из них до лета 1885 года ничего похожего на серебристые облака не описал. Может быть, наблюдения облаков не зафиксировались в научной истории в силу тривиальности? Но тот же Витольд Цераский к 1885 году уже около десяти лет занимался фотометрией сумеречного небосвода. Это кропотливое занятие требовало пристального внимания к любому облачку, способному исказить данные. Цераский писал: «Мне было бы довольно трудно не заметить явления, которое порою охватывает не более не менее как весь небесный свод». Того же мнения придерживался и Отто Йессе. Поэтому будем исходить из того, что серебристые облака до лета 1885 года действительно не наблюдались и, вероятно, не существовали. Разумеется, попытки объяснить новинку природы были предприняты очень скоро. Наиболее логичным объяснением в тот момент показалось катастрофическое извержение вулкана Кракатау на территории современной Индонезии, приведшее к мощнейшему взрыву, буквально поднявшему на воздух целый остров. Были и другие теории — мы рассмотрим их ниже. Но прежде чем говорить что-то о самих серебристых облаках, стоит обратить внимание на условия, в которых они существуют.

Земная атмосфера — сложный объект, характеризующийся различными условиями. По высоте ее принято подразделять на тропосферу (до 10 км), стратосферу (10−50 км), мезосферу (50−85 км), термосферу и экзосферу. Серебристые облака образуются в области, пограничной между мезо- и термосферой — так называемой мезопаузе.

Физические условия выше и ниже мезопаузы различны. Мезосфера холодна — температура в ней опускается до -150°С. Термосфера, напротив, характеризуется очень высокими температурами — воздух под действием солнечного излучения разогревается порой до 1500К. Концентрация молекул газов в термосфере настолько мала, что привычные нам механизмы переноса тепловой энергии не работают, и единственный способ остыть — излучать энергию.

Теперь представьте себе, какие облака могут появиться в таких «жестких» условиях? Обычные перисто-кучевые облака «обитают» в тропосфере, на высоте 5−6 км, и представляют собой нечто вроде водяного тумана. Облако же, способное образоваться на высоте 70 км, можно сравнить с человеком, приноровившимся к существованию без защитных средств, например, на Юпитере…

Откуда же они появились?

Выше мы упоминали вулканическую гипотезу формирования серебристых облаков, предложенную немецким физиком Фридрихом Кольраушем в конце XIX века. Увы, последующие исследования показали, что свойства облаков и свойства взвешенных в атмосфере вулканических аэрозолей сильно различаются.

В 1920-х годах исследователем метеоритов Леонидом Куликом была предложена гипотеза метеоритного происхождения серебристых облаков — по ней они состоят из мельчайших частиц метеоритного вещества, распыленного в верхних слоях атмосферы. Действительно, исследования мезосферы метеорологическими ракетами еще в 1960-х показали, что в серебристых облаках присутствует определенное количество вещества явно метеоритного происхождения. Но научным мейнстримом к тому времени была уже другая теория — конденсационная, начало которой положил советский физик Иван Андреевич Хвостиков.

Важная особенность серебристых облаков состоит в том, что они наблюдаются из года в год на одних и тех же высотах (порядка 80 км), одних и тех же широтах (50−70 градусов) и только летом, причем все эти правила выполняются и в Северном, и в Южном полушариях. Ни вулканическая, ни метеорная гипотезы объяснить эти факты не могли. Конденсационная версия предполагает, что серебристые облака состоят из мельчайших кристалликов льда, намерзших на аэрозольные частицы. Зона возникновения этих нанольдинок находится на высоте порядка 90 км, оттуда они под действием гравитации постепенно дрейфуют вниз, увеличиваясь в размерах. На высоте около 85 км их скопления становятся видимыми в сумерках при солнечной подсветке снизу — появляются облака. Для формирования таких льдинок нужны как минимум три условия: низкая температура, достаточная влажность и наличие центров кристаллизации.

Наибольшая проблема состоит во влажности воздуха. Верхние километры мезосферы суше Сахары — воды там ничтожно мало и поступает она туда в основном из двух источников. Это, во‑первых, водяной пар снизу, а во-вторых — разрушение молекул метана под действием солнечного ультрафиолета, после чего при участии атмосферного кислорода образуется вода. Трудность в том, что молекулы воды под действием солнечной радиации тоже распадаются — среднее время их жизни в мезопаузе исчисляется несколькими днями. Пока нет полной ясности относительно того, при каких условиях и в какие сроки в мезопаузе может собраться достаточное количество воды, поэтому при всей правдоподобности конденсационной версии вопрос далеко не закрыт.

Средства изучения

Изучение серебристых облаков — дело непростое. Воздух выше стратосферы столь разрежен, что ни самолет, ни аэростат держаться в нем не могут; единственный летательный аппарат, способный добраться до таких высот, — ракета. Это создает изрядные неудобства для исследователей: ракета, летящая с высокой скоростью, находится в изучаемой зоне считанные секунды и контактирует со средой весьма ограниченно. Ее запуск возможен далеко не отовсюду и стоит довольно дорого.

В первой половине XX века для изучения атмосферы было предложено применять оптическое зондирование. Поначалу для этого использовался мощный прожектор. Наблюдаемое рассеяние светового пучка давало информацию о составе и состоянии воздушных масс. В США прожекторное зондирование применялось в основном для определения плотности и температуры воздуха, в СССР важной задачей считалось также изучение атмосферных аэрозолей, для чего луч прожектора поляризовался и далее изучалось распределение поляризации с высотой. Разумеется, прожектор как источник света был не слишком удобен — потолок зондирования никогда не превышал 70 км.

С 1960-х годов для изучения атмосферы все шире и шире применяются так называемые лидарные установки, в которых источником светового луча служит лазер. Небольшая часть его излучения, рассеявшись в атмосфере, возвращается назад и улавливается приемником. Лазерное излучение когерентно, длину его волны и поляризацию можно определить с большой точностью. Испускать лазерный луч можно в течение промежутка времени, определяемого с высокой точностью. Таким образом задается длина светового пучка. Это позволяет по времени прихода отраженного сигнала вычислить расстояние от установки до рассеявшей сигнал области атмосферы с точностью до нескольких метров. Ну а характеристики отраженного (рассеянного) излучения несут в себе информацию о той среде, от которой он отразился.

Второй важный инструмент — исследование поляризации света. То, что видимый нами солнечный свет поляризован, обнаружил еще Франсуа Араго в далеком 1809 году, он же установил, что максимум поляризации находится на угловом расстоянии в 90 градусов от Солнца. На степень поляризации света влияют свойства той среды, на которой он рассеялся. На этом и основан метод. Особенно замечательно то, что в сумерках, когда находящееся под горизонтом Солнце подсвечивает земную атмосферу снизу, поляриметрия дает информацию о свойствах конкретного слоя воздуха, ярче всего освещенного именно в этот момент. Таким образом, измеряя поляризацию в течение сумерек, можно получить распределение свойств по высоте.

С началом космической эры на повестку дня встал вопрос о том, что наблюдать серебристые облака можно и из космоса. Первым аппаратом, созданным специально для исследований мезосферы и серебристых облаков, стал американский спутник AIM (The Aeronomy of Ice in the Mesosphere), запущенный в 2007 году и работающий на орбите до сих пор.

…и Тунгусский метеорит

Самый известный случай массового наблюдения серебристых облаков произошел летом 1908 года, непосредственно после падения Тунгусского метеорита и, логично полагать, в связи с ним. Почти по всей Европе из-за светящихся облаков наступили «белые ночи» — даже там, где отродясь никто о них не слыхивал. Очевидцы вспоминали, что посреди ночи было достаточно света, чтобы читать газету. К сожалению, надежных инструментальных замеров почти не проводилось, а современные оценки сильно расходятся — освещенность тех ночей оценивается как превышающая естественный фон в 10−8000 раз.

Современники, как правило, не связывали необычные облака с Тунгусским метеоритом, поскольку не знали о его существовании. Сам факт падения какого-то небесного тела где-то в Енисейской губернии был известен — его даже пытались искать, но истинный масштаб произошедшего ученые смогли оценить лишь два десятка лет спустя. Кроме того, как раз в тех местах атмосферных аномалий, во всяком случае явных, не наблюдалось. Ночную иллюминацию объяснили вулканизмом, что по тем временам звучало правдоподобно.

С точки зрения сегодняшних представлений, серебристые облака лета 1908 года связаны все-таки скорее с Тунгуской — но вот как? Хотя версий произошедшего в 1908 году наберется около сотни, наибольшим доверием ученых пользовались две: метеоритная и кометная. Метеоритная натыкается на фундаментальную проблему — куда делся камушек? Кометная кажется по всем статьям лучше, но появление серебристых облаков в ее рамках выглядит труднообъяснимым. Распыленное в атмосфере вещество должно было улететь от Ванавары на восток, а серебристые облака были бы видны во Владивостоке и Токио — но ничего подобного не произошло. Кроме того, размеры кометной «ауры» доходят до сотен тысяч, а иногда и миллионов километров. Подлетая к Земле приблизительно со стороны Солнца, хвостатая гостья должна была напылить в атмосфере еще за пару дней до падения, а вращение Земли совершенно естественным путем распределило бы все вещество равномерно по окружности.

Вот и получается, что загадочный тунгусский феномен изрядно увеличивает количество вопросов и к серебристым облакам. Спустя 125 лет после того, как приват-доцент Витольд Карлович Цераский под утро увидел в небе необычные облака, мы все еще не можем сказать с уверенностью, что понимаем, откуда и как они взялись.